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Abstract. By manipulating the principal stretches during a
two-step space mapping within the framework of transforma-
tion optics, the input spatial frequency bandwidth of a conven-
tional Fourier lens can be extended based on an isotropic
transformation material. Isotropy is important for easy fabrica-
tion, low loss, and broadband application; moreover, it sug-
gests a route for realizing Fourier transforms of continuous
fractional order with enhanced input spatial frequency band-
width. © The Authors. Published by SPIE under a Creative Commons
Attribution 3.0 Unported License. Distribution or reproduction of this work in
whole or in part requires full attribution of the original publication, including
its DOI. [DOI: 10.1117/1.OE.52.6.060501]
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Of late, considerable attention has been paid to the transfor-
mation method,1–3 because it provides an intuitive and direct
way of designing interesting materials that can control
electromagnetic,1–3 acoustic,4 and elastic5 wave propagation
at will. Many interesting devices, such as invisible cloaks,2,3

have been designed based on transformation method. This
method has also been explored to improve optical informa-
tion processing. Li et al.6 designed a Fourier lens that has
wider input spatial frequency bandwidth by applying trans-
formation optics to the conventional graded index (GRIN)
lens. Their result, however, depended on an anisotropic
material, which can usually be realized with local resonant
mechanism or metamaterial technology,2 and is challenging
for low-loss and broadband applications. For example, the
lens constructed by Li et al.6 can only work in a particular
wavelength range. Furthermore, this anisotropic material
also limits the application of the lens to the fractional
Fourier transform (FRFT),7 which is widely used in image
processing and other information systems.8 To indicate this
limit, we consider the two-dimensional (2D) device for trans-
verse electric (TE) or transverse magnetic (TM) waves. A
conventional GRIN lens can have the refractive index distri-
bution as nðyÞ ¼ n0½1 − ð1∕2Þη2y2�, where y is the radial
distance from the optical axis and n0 and η are the GRIN
lens parameters.9 Under the paraxial approximation, if the
lens thickness b ¼ π∕ð2ηÞ, the signal at the output facet
becomes a Fourier transformed one of the input signal.9

According to the optically interpreted FRFT, the α-order
FRFT ð0 ≤ α ≤ 1Þ can be physically defined as the

functional form of the output signal at αb from the input
facet,7 which is located at the inner region of the lens. As
the anisotropic unit block is constructed from different
material layers,6 the system is also challenging for small-
scale fabrication and thus the inner region of the lens is dis-
crete to some degree. This discreteness will influence the
signal detection precision in the inner region. Therefore, to
promote the broadband and low-loss practical application
of optical FRFT, where the traditional Fourier transform is
viewed as a special case when α ¼ 1, an isotropic material
is in great demand for such a transformation lens.

To achieve the isotropic transformation media, one can
use the numerical method based on inverse Laplace’s equa-
tion with sliding boundaries.10 For further application, it is
better to get the transformation material in analytical form,
such as conformal mapping in the complex plane.3 Here we
propose a potentially more flexible alternative of this design,
with which the space mapping can be obtained step by step
directed by straightforward geometrical senses. To this end,
the deformation view of the transformation optics is intro-
duced, where the transformed material parameters can be
expressed in a geometrical way11 as
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where λ1, λ2, and λ3 are the three principal stretches of a spa-
tial element during space deformation, and ε 0 and μ 0 are the
transformed permittivity and permeability, respectively.
Equation (1) is established in the local principal system of
the deformation. Instead of directly adjusting the explicit co-
ordinate transformation expression, Eq. (1) suggests that one
can adjust the principal stretches, which have very clear geo-
metrical meaning, to manipulate the transformed material
parameters.

Accordingly, our design should be divided into two steps,
as shown in Fig. 1, by which the input facet of the conven-
tional GRIN lens is compressed while the output facet
remains the same.6 First, a rectangle ABCD is bent to a sector
AIBICIDI with the side length AIDI ¼ b and the output
facet size AIBI ¼ a, both of which remain unchanged, where
superscript I indicates the first-step transformation. At each
point, there is only rescaling in the θ̂ direction during the
deformation, and this stretch can be easily obtained by com-
paring the arc length βr with its original length a, thus the
principal stretches are

λIθ ¼
βr
a
; λIr ¼ 1: (2)

According to Eq. (1), this transformation will result in the
anisotropic medium, as was shown in Ref. 6. Now, let us
carry out the second-step transformation r 0 ¼ fðrÞ, θ 0 ¼ θ
in the polar co-ordinate system shown in Fig. 1(b) and 1(c),
where the continuous function fðrÞ is to be determined. This
transformation will lead to principal stretches

λIIθ ¼ r 0dθ 0

rdθ
¼ r 0

r
; λIIr ¼ dr 0

dr
; (3)
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where the superscript II indicates the second-step transfor-
mation. To obtain the isotropic transformation material, the
total stretches in the θ̂ and r̂ directions should be equal, so
that

λθ ¼ λIθλ
II
θ ¼ λr ¼ λIrλ

II
r ≡ λ: (4)

By inserting Eqs. (2) and (3) into Eq. (4), one has

λ ¼ dr 0

dr
¼ βr 0

a
: (5)

With the boundary condition that the output facet size is
unchanged, i.e., r 0ðr ¼ R2Þ ¼ R2, the function fðrÞ can be
solved from Eq. (5) as

r 0 ¼ fðrÞ ¼ R2e
β
aðr−R2Þ: (6)

As there is no transformation in the ẑ direction, or λz ¼ 1, the
resulting material parameters, according to Eq. (1), will be
ε0r¼ε0θ¼ε0, μ0r¼μ0θ¼μ0, ε 0z ¼ ð1∕λÞ2ε0, and μ 0

z ¼ ð1∕λÞ2μ0.

Thus, the isotropic refractive index for TE or TM waves is
n 0
r ¼ n 0

θ ¼ ð1∕λÞn, where n ¼ ffiffiffiffiffiffiffiffiffi
ε0μ0

p
is the refractive index

of the conventional rectangle-shaped GRIN lens.
To validate the transformed material parameters, a

numerical simulation was performed using the software
COMSOL Multiphysics, where we set β ¼ 1 radian and
R2¼a¼3.5 μm, b¼3.0377 μm, nðyÞ¼1.5½1−ð1∕2Þη2y2�
with η ¼ 0.5171, i.e., b ¼ π∕ð2ηÞ. The enhancement factor
of the designed lens γ is the compression factor of the input
boundary 1∕λðr 0 ¼ R1

0Þ6 and can be obtained from Eqs. (5)
and (6). In this example, γ ¼ 2.3819. The simulation results
are shown in Fig. 2, where the wavelength of the input TE
wave is 0.15 μm, and the wave is impinging on the input
facet with aperture width d, therefore the rectangular aperture
function is optically Fourier transformed to sinc function at
the output facet. For the designed lens, we set d ¼ 0.3 μm,
shown in Fig. 2(b); for the conventional GRIN lens, we set
d ¼ γ × 0.3 μm ¼ 0.7146 μm, shown in Fig. 2(a). Owing
to paraxial approximation, the widths of the output signals
that are well matched with the ideal ones are about
1.6 μm. It is clear that a narrower input signal in the designed
lens can obtain the same effective output signal, shown
in Fig. 2(e) as that in the conventional GRIN lens in
Fig. 2(d) with a γ-times wider input signal; thus, a
γ-times enhancement for the input bandwidth was achieved.6

Furthermore, we set d also equal to 0.3 μm for the conven-
tional GRIN lens in Fig. 2(c) and checked its output signal
gðκÞ ∼ sin cðuÞ, where κ denotes spatial frequency and
u ¼ πdκ.9 It can be shown that in the conventional lens if
u ¼ π, where the sinc function becomes zero as seen in
Fig. 2(f), the corresponding u in the designed lens is
about 2.38π, shown in Fig. 2(e), thus a greater amount
(2.38 times) of spatial frequency is revealed in the latter.

The designed lens itself is an FRFT device because of
its semigroup property.7 To obtain its α order FRFT, the

Fig. 1 Two-step transformation of the isotropic Fourier lens: (a) origi-
nal space of the conventional rectangle-shaped GRIN lens; (b) space
after the first-step transformation; (c) space after the second-step
transformation.

Fig. 2 Contour plots of the electric fields jEz j in the devices and the corresponding amplitude spectrum along the output facet. (a) and (d): conven-
tional lens with d ¼ 0.7146; (b) and (e): designed lens with d ¼ 0.3; (c) and (f): conventional lens with d ¼ 0.3. The blue solid lines in (d), (e) and
(f) are the simulation results, while the red dotted lines are the ideal ones.
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detection line is usually located at αb 0 from the input facet.
However, the FRFT result will be different from that of the
conventional one with the same order α, because this detec-
tion location is not the transformation counterpart of the
original one. The points at line x ¼ R1 þ αb in Fig. 1(a)
are transformed to points at line r 0 ¼ fðR1 þ αbÞ, not the
line r 0 ¼ R1

0 þ αb 0 in Fig. 1(c), as shown in Eq. (6). Thus,
according to the idea of transformation optics, to obtain the
same FRFT results in the designed lens as those of the con-
ventional one for the same order α, the detection location
must be moved from the line r 0 ¼ R1

0 þ αb 0 to r 0 ¼
fðR1 þ αbÞ. To validate the adjustment effects, FRFTs with
α ¼ 0.25, 0.5, and 0.75 were checked, respectively, in the
same simulation environment as Fig. 2(a) and 2(b), and
the results are shown in Fig. 3, where the compressed widths
of the FRFT results in the designed lens have already been
normalized for convenience of comparison. Only the results
near the optical axis are considered according to the paraxial
approximation. It is clear that the designed lens can provide
almost the same FRFT results as that of the conventional lens
for the same order. More demonstrations of the optical FRFT
in conventional GRIN lens can be found in Ref. 12.

To conclude, keeping the principal stretches equal in the
space mapping, an isotropic material can be designed for the
Fourier lens that has an enhanced input spatial frequency
bandwidth. The isotropic material, having important features
like broadband and low loss, is also less discrete, and that
helps the practical application of FRFT. More discussions
on the deformation view of the transformation method can
be found in Refs. 13–15. The clear geometrical sense pro-
vided by this view can help in optimizing more potential
transformation media designs.
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