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Abstract. This paper describes the Imperial College near infrared spectroscopy neuroimaging analysis (ICNNA)
software tool for functional near infrared spectroscopy neuroimaging data. ICNNA is a MATLAB-based object-
oriented framework encompassing an application programming interface and a graphical user interface. ICNNA
incorporates reconstruction based on the modified Beer–Lambert law and basic processing and data validation
capabilities. Emphasis is placed on the full experiment rather than individual neuroimages as the central element
of analysis. The software offers three types of analyses including classical statistical methods based on com-
parison of changes in relative concentrations of hemoglobin between the task and baseline periods, graph
theory-based metrics of connectivity and, distinctively, an analysis approach based onmanifold embedding. This
paper presents the different capabilities of ICNNA in its current version. © 2017 Society of Photo-Optical Instrumentation
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1 Introduction
Back in 2007, we started developing a software tool for the
analysis of functional near infrared spectroscopy (fNIRS) neuro-
images, then referred to as the Imperial College neuroimaging
analysis (ICNA). The original tool provided as a distinctive fea-
ture an analysis method based on manifolds. This approach was
at that time relatively unexplored in neuroimaging and in fNIRS
in particular. As the analytical needs of our group grew, so did
ICNA. Since then, ICNA has reached maturity becoming a tool
for fNIRS neuroimaging analysis offering different analysis
alternatives, both statistical and topological (manifold-based
and graph theory), and being referred to as Imperial College
near infrared spectroscopy neuroimaging analysis (ICNNA). A
salient feature of ICNNA is its emphasis on the full experiment
rather than individual neuroimages as the central element of
analysis. This technical note briefly overviews the different
capabilities of ICNNA in its current version.

In optical neuroimaging,1,2 light can be irradiated in several
ways to yield continuous-wave, frequency domain, and time-
domain images. Each of the different fNIRS images exploits a
different optical parameter (e.g., absorption, scattering, Doppler
effect, etc.) to monitor the alteration of a certain physiological
parameter and infer brain activity from change in cortical
hemodynamics.3 Perhaps the predominant submodality for
optical functional neuroimaging currently is continuous-wave
fNIRS,4 for which a variety of tools have been developed.
Processing and analytical tools such as HomER (versions 1
and 2),5,6 NAVI,7 fOSA,8 NIRS-SPM,9 NAP,10 FC-NIRS,11

fNIRSr,12 NinPy,13 HITACHI’s POTAto, or NIRx’s nirsLAB,14

have permitted fNIRS practitioners to explore many aspects of
brain development, behavior, and pathologies15 covering both
integrational and segregational questions about brain function.
More recently, analysis tools for hyperscanning scenarios, such

as the +NIRS Toolbox, are becoming available.16 Thus far,
classical statistical analysis has clearly dominated the data
processing and analytics9,17 with alternatives exploring differen-
tial models,18 probabilistic graphical configurations,19,20 graph
theory,21 and topology.22

ICNNA23 is a software framework encompassing an applica-
tion programming interface (API) and a graphical user interface
(GUI) implemented under the MATLAB® environment, which
has grown to become a flexible analysis tool. ICNNA has some
basic reconstruction, processing, and visualization capabilities.
However, where ICNNA stands out is in its analytical capabil-
ities. ICNNA is capable of conventional statistical analysis
(e.g., task-minus-baseline),24 and graph theory-based analysis,21

and yet distinctively, ICNNA also offers topological analysis
based on manifold modeling,22 within the same environment,
and importantly from the same mathematical framework, where
the neuroimage is considered to form a tensor, and the applica-
tion document is a full experiment, consequently affording
great analytical flexibility. From the computational perspective,
ICNNA capitalizes on the object-oriented programming para-
digm while still relying on MATLAB’s matrix manipulation
for algebraic computation. The conceptual model is capable of
accommodating a range of experimental designs from basic to
complex, and provides a flexible and highly expressive frame-
work for articulating different analysis affording support for
interpretation. This paper aims to (i) present the conceptual model
underlying ICNNA and (ii) provide an overview of ICNNA’s
most recent version capabilities for fNIRS data analysis.

2 Conceptual Model for Functional Near
Infrared Spectroscopy Experimentation

ICNNA puts the experiment, and not the individual neuroi-
mages, in the center of the analysis. Experimentation with
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functional optical neuroimaging is not substantially different
from experimentation in other neuroimaging modalities, or in
fact many other fields of science.25 In an experiment, a cohort
of subjects (experimental units) is recruited and distributed, pos-
sibly randomly, into a number of groups following a within- or
between-subject policy. Each group undertakes one (between-)
or more (within-) experimental treatments that can take the form
of executing a certain task, undergoing a particular stimulation,
or being observed at rest, and represent potential combinations
of levels of experimental factors. The treatment is served under
controlled conditions specifically manipulated to test a pre-
stated hypothesis over a particular phenomenon regarding
brain behavior. Experimental sessions correspond to data har-
vesting opportunities where the neuroimages (observations)
are acquired either cross-sectionally at a single time point or lon-
gitudinally at more than one time point with repeated measure-
ment data. During these experimental sessions, the brain is
monitored with the neuroimaging modality of choice, and per-
haps other biosignals are further sensed and task performance
metrics are further collected. It may be the case that the task
or stimulus is carried out off-line before and/or after the neuro-
imaging session, and the plastic changes in the brain are
observed. Whatever the situation, neuroimages as well as the
other data streams, are acquired with certain devices acting as
data sources each with specific sensing specifications. In a typ-
ical stimulus train as the example shown in Fig. 1, often the task
or the stimulation is repeated a number of times, referred to as
blocks or trials, to increase the chances of discriminating brain
activity from background noise.

Group level analysis benefits from software that it is centered
around the experiment. When the individual neuroimage is the
central element of the tool document or project, it is often
accompanied by batch processing and cohort level analysis is
either not available, cumbersome e.g., second-level statistics
may require manipulation of intermediate representations, or
require exporting to a third software. A software centered
around the experiment can also facilitate different analysis to
be carried out over the same dataset.

3 Scaffolding for Housing Functional Near
Infrared Spectroscopy Experiments

Upon analyzing a typical neuroimage experiment in ICNNA,
one has three aspects to consider; (i) who is to be measured?—
subjects, again experimental units-, (ii) what and where do we
measure?—data source, that is sensing geometry-, and (iii) how
are measurements to be acquired?—sessions or observation
acquisition, encompassing the intertwined relations among
other experimental elements. Given these three elements, the
experiment can be thought of as a hierarchical tree (see Fig. 2).
This hierarchical structure is replicated in the software architec-
ture represented by its class diagram in Fig. 3.

An experiment gathers data from a cohort of subjects (exper-
imental units) over certain defined sessions from a range of data
sources (dataSources). In the strictest sense, a session corre-
sponds to a data collection exercise. But it is in the flexible
definition of the experiment sessions that the conceptual model
of ICNNA can accommodate many experimental designs. An

Fig. 1 A typical stimulus train of an fNIRS experiment. In this exam-
ple, three experimental conditions are repeated a number of times
(blocks) at self-paced (blocks have different duration).

Fig. 2 Idealization of an fNIRS experiment as a tree where partici-
pants (subjects) are allocated to different treatments administered
in different experimental sessions during which their brain function
is monitored with some devices acting as sources of data.

Fig. 3 Simplified class diagram supporting ICNNA’s data structure.
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example may be a longitudinal clinical trial in which there is a
control group receiving treatment A, and an intervention group
receiving treatment B being tested along n time points.
Definition of this experimental design in ICNNA requires dec-
laration of 2n sessions; two tasks at n time points. Note that each
subject in the cohort may perform either only one of the treat-
ments (between subjects) or both (within subjects), but the
subject is automatically “assigned” to the correct group simply
by participating in the appropriate sessions where the corre-
sponding treatment is administered. During a session, data are
collected from one or more sensing devices by means of a col-
lection of sensors. The concept of dataSource in this conceptual
model is more generic than just a neuroimage, which is just a
specific kind of data source. For instance, we have concrete
classes to deal with several other sources such as eye-trackers,
optical trackers, or magnetic trackers among others that are not
included with ICNNA (unpublished). A data source makes no
assumption about the state of the information gathered (raw or
processed) nor about its nature; it is an encompassing concept
that comprises data in raw state or already reconstructed in any
processed state.

Harvested data, raw or reconstructed, are thought of as a
three-dimensional data tensor: <temporal, spatial, and signal>
as shown in Fig. 4. The first dimension stores data samples at

different times in a sequential order. The second dimension col-
lapses all spatial locations that ICNNAwill refer to as channels
and that can be accessed by simple indexation. When locations
can be confined to a surface, this is the realm of optical topog-
raphy,2,26 When a thick slab of tissue is probed this is the domain

Fig. 4 The fNIRS neuroimage as a tensor. The data tensor is encoded in the structuredData object. Even
although the tensor itself is generic for other sources of data, but only one data type is stored at a time in a
structuredData and hence it is illustrated here for the fNIRS neuroimage alone. The three cutting planes
corresponding to specific submatrices are exemplified. In the particular case of the signal view, both
signals (i.e., two parallel planes) are shown.

Fig. 5 Wavelength dependency of the DPF used by ICNNA. The
kDPF is only known between 740 and 915 nm (as far as the authors
know). The values outside the range reported by Essenpreis et al.32

are available from the fOSA software and attributed to Mark Cope
(source unknown according to fOSA). Beyond those values, an arbi-
trary kDPF ¼ 1 is applied.
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of optical tomography.27–29 Note that the specific spatial distri-
bution of channels is encapsulated, not in this data tensor,
but separately in a channelLocationMap object. Finally, the
third dimension of the data tensor encapsulates the different
acquired signals, whether corresponding to optical filters’ raw
output or later reconstructions of hemoglobin species. In its raw
state, an optical neuroimage can be recorded at different wave-
lengths, typically at two or three wavelengths, or perhaps multi-
spectrally and hyperspectrally, each wavelength constituting a
signal. Following reconstruction, an optical neuroimage records
at each channel information of oxygenated and reduced hemo-
globin, but also perhaps of the enzyme cytochrome-c-oxydase,
or derived total hemoglobin or blood oxygenation. Of course, at
least as many wavelengths have to be recorded to recover a
given number of original signals. For instance, an fNIRS image
from a continuous-wave device recording at two wavelengths at
10 Hz with a 24 channels configuration, e.g., typical configu-
ration of the HITACHI ETG-4000 optical topography system,
during 1 min, may produce a tensor of <600 samples, 24 chan-
nels, 2 hemoglobin species>, which is stored in a processed
structuredData. A whole experiment, a document in ICNNA,
is thus an indexed collection of structuredData tensors.

Each dataSource has embedded a timeline that encodes
experimental conditions and events occurring during the ses-
sion. The timeline is a collection of conditions that in turn are
a collection of events. Each event is identified by an onset and a
duration (maybe 0 for instantaneous events) and can have some
associated information. For those raw formats that are supported
and for which the temporal information is available ICNNA

automatically imports that information. Supported formats
can be found in the user manual. Otherwise, manipulation from
the GUI (Fig. 1) or the command line is possible. For those
processing and analysis operations incorporated to ICNNA
that may affect the timeline, e.g., decimation, the timeline auto-
matically updates accordingly.

4 Image Reconstruction, Processing, and
Integrity Check

ICNNA’s main goal is not the processing of the NIRS signals.
Instead, it was conceived to help mostly with analysis and
understanding and thus its abilities on this processing facet are
confined to very common procedures. In this sense, reconstruc-
tion in ICNNA is achieved using the modified Beer–Lambert
law (MBLL)30 with or without differential pathlength correc-
tion. Differential pathlength factor (DPF) value is estimated
as a product of an average value times a wavelength-dependent
factor; DPF ¼ kDPFðλÞ· DPFavg. The DPFavg is by default given
a value 6.26 at 807 m,31 but the user can program a different one.
Essenpreis et al.32 get an average DPF ¼ 6.32� 0.46 at 800 nm
for adults. Wavelength dependency, expressed by the kDPFðλÞ, is
calculated as the ratio of the wavelength-dependent DPF and the
DPF at an arbitrary reference.32 But distinct from the 800 nm
reference used by Essenpreis et al.,32 ICNNA uses the 807-nm
reference (see Fig. 5). Standard processing in ICNNA is
restricted to linear detrending for correcting system drift and
low-pass filtering using decimation for basic physiological
denoising as illustrated in Fig. 6. Default decimation factor
is set to 10, but the user can choose it via the command

Fig. 6 ICNNA data processing capabilities including detrending, decimation, and block averaging on
a per channel basis.
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line through the method nirs_neuroimage.decimate. Neverthe-
less, ICNNA alleviates this shortcoming by: (i) providing a
direct link with UCL’s fOSA,8 with ICNNA being capable of
reading fOSA files whether individually or as a batch, and
(ii) giving the user direct access to data at any stage, raw or proc-
essed, so that processing can be made outside ICNNA and then
easily return to ICNNA for continuing with the analysis.
Through the API, direct manipulation of the data is available
to the user who can perform additional processing. The range
of processing and analysis techniques that have been applied
to neuroimaging can be overwhelming. The description of all of
these techniques is beyond the scope of this paper, and vast
literature is available on any of these. For fNIRS, there are
excellent reviews available.6,17

It is common for fNIRS researchers to carry out a visual
inspection of their data to eliminate data that have been affected
by common artifacts. ICNNA provides automatic detection
of common artifacts such as optode movement—sometimes
referred to as body movement—and detector saturation whether
at one wavelength producing the characteristic mirroring effect
or at two wavelengths leading to apparent nonrecordings.33 In
particular, for optode movement, ICNNA provides implementa-
tion for the approaches suggested in Peña et al.34 (threshold-
based) and Sato et al.35 (wavelet-based) as well as an additional
approach based on time series modeling where the optode
movements are indicated by concurrent deviations of the time
series predictions in both hemoglobin species. For saturation-
related artifacts, prior to image reconstruction, ICNNA can scan
the raw measurements for values on the extreme of the sensor
output, or alternatively if data are available only following
reconstruction, ICNNA detects saturation episodes using a

multiscale windowed cross-correlation algorithm in which a
high cross-correlation between the hemoglobin species at differ-
ent scales is indicative of mirroring. Alternatively, the user can
manually label each channel as “contaminated” or “clean.” Only
those channels containing clean data are passed on to further
analysis.

Finally, ICNNA incorporates a semivirtual registration tool.36

The tool employs a virtual hemispheric model of the standard
10/20, UI 10/10, and 10/5 models37 that is deformed to match
five control points—inion, nasion, right and left preauricular
points, and Cz—and permits estimation of the standard location
closest to the channels and/or estimation to distances to targeted
locations.36 The three-dimensional (3-D) coordinates for the
control points and channel locations can be registered with a
Polhemus patriot with at 8′′ stylus. The GUI of this add-on is
illustrated in Fig. 7.

5 Analysis

5.1 Analytical Experiment Space

The experiment space is an intermediate representation that per-
mits ICNNA to seamlessly afford different types of analytical
approaches. The experiment space (experimentSpace) parame-
terizes the repository, setting a suitable scheme ready for analysis.
The way in which this scheme is built from the data determines
whether a channel-based or a region of interest (ROI)-based
analysis is to be carried out. The experiment Space is a seven-
dimensional lattice where the dimensions arise from experimental
concepts: subject, session, data source, stimulus or experimental
condition, trial or block of the experimental condition, channel or
spatial ROI, and signal, e.g., chromophore.

Fig. 7 The GUI of the semivirtual registration tool integrated with ICNNA. It supports the international
10∕20, as well as the UI 10∕10 and 10∕5 systems. Digitalized 3-D locations of optodes and channels are
mapped to a hemispheric model, which is the distorted so that distances to target positions can be
estimated.
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The coordinates of the points in this space are simply the
categorical identifiers of the different elements. The points in
this space akin to a vector space have associated a temporal
chunk of the timecourses of the recorded neuroimages, which
extract individual trial information composed of baseline, task,
and rest or recovery periods. This is done in two steps. First,
block splitting is performed, whereby the neuroimages are split
in smaller subimages containing only one single event of each
experimental condition. Second, a particular temporal window
for analysis is selected. Parameterization of the window selec-
tion is illustrated in Fig. 8. There is to date, no gold standards
regarding the optimal temporal length of data for comparison.
Heterogeneity in data selection strategies include using the

entire stimulus episode, excluding a few seconds at the begin-
ning of stimulus data to account for transient inertia of hemo-
dynamic change, and/or incorporating fixed-length temporal
windows regardless of stimulus onset and offset. All of these
are available within the ICNNA framework. We have investi-
gated the influence of the temporal window selection on
subsequent activation maps and demonstrated perhaps unsur-
prisingly that variation in temporal data selection significantly
influences activation detection.38 Finally, to provide the flexibil-
ity of analysis ICNNA permits the points of the experiment
space to express averaged behavior across stimulus blocks,
resampled versions of the blocks, e.g., in case of self-paced
tasks, normalized versions of the blocks, and any combination
of these. In summary, in this representation, all the information
of the experiment is present in the space, but the information has
been split into its quantum division by trial and perhaps homog-
enized in its temporal variation, e.g., resampling.

A convenient feature of ICNNA is the capability of output-
ting some of the descriptive stats over the experiment space,
e.g., mean and standard deviation of baseline and task, time to
peak, time to nadir, etc., to a comma separated values file so
that further analysis can be carried out in external statistical
packages, such asSPSS or R.

5.2 Statistical Analysis

Stimulus evoked changes in cortical hemodynamics consistent
with cortical activation comprise increases in oxyhemoglobin
(HbO2) coupled to decreases in deoxyhemoglobin (HHb).39

These are often expressed as statistical comparisons between

Fig. 9 (a) Exemplary activity matrix corresponding to a longitudinal dataset with three different experimen-
tal conditions (A, B, and C). (b) Activity patterns are numbered according to the direction of change and its
reaching of significance and then color coded for quick exploration. The example corresponds to an experi-
ment where clear trends of higher activity concentration were located in the superior channels. (c) Channel
locations. Although ICNNA records the channelLocationMap, the pictorial representation of the channel
location map has been generated externally to ICNNA and is only shown here for reference purposes.

Fig. 8 Schematic depiction of the analysis window parameterization.
HbO2 time to peak or HHb time to nadir may not be confined to the
experimental stimulus period, but may be captured with the flexible
analytical window.
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the distributions of “rest” and “stimulus” data.17 The represen-
tation of this classical task-minus-baseline statistical analysis in
ICNNA is the activity matrix; a matrix in which the rows
represent the cases of interest, e.g., a particular stimulus, a par-
ticular session or a particular subject among others, and columns
represent channels. For each case of interest and channel, two
univariate tests of hypothesis, one for each Hb species—com-
pare the distribution of values during the stimulation period with
those of the baseline (see window selection parameterization
above). The value encoded in each position of the matrix is
the pattern of activity, ranging from 1 to 17 representing any
of the 4 × 4 possible combinations of statistically significant
increment, nonsignificant increment, non-significant decrement,
and significant decrement for both Hb species; plus an addi-
tional pattern when there are no data (e.g., when the available
data have been nullified during the integrity checks). An exem-
plary activity matrix is shown in Fig. 9. The ICNNA framework

presently does not extend to a representation of these statistical
results onto a head or brain, which must be performed externally.

ICNNA provides two alternatives for the hypothesis testing:
one parametric (t-test) and one non-parametric (Wilcoxon).
Although the approach of two univariate tests, one for HbO2

and another for the HHb, is often accepted, statistically it intro-
duces an error as it assumes the two hypotheses being tested as
independent of each other, but this is certainly not the case
considering the cross talk during the reconstruction.40 A more
appropriate solution will be a multivariate hypothesis test, but
this is not currently available in ICNNA.

5.3 Manifold Embedding-Based Analysis

ICNNA facilitates manifold-based topological analysis of the
brain function.22 In this analysis, the brain function is hypoth-
esized to abide the topological construct of a manifold, and

Fig. 10 (a) Topological analysis of neuroimages. The brain function is hypothesis to be confined to a
manifold surface. (b) ICNNA GUI for the exploration of the brain function manifold. (c) Distance distortion
plot permitting estimation of the distortion suffered during the dimensionality reduction imposed for
rendering.
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consequently many phenomena about brain function can be
expressed under a topological framework.41 The basic analytical
path of this type of analysis was referred to by Friston et al.42 for
fMRI data as the “functional space.” In this approach, points in
the experiment space, e.g., brain function at a channel, form a
cloud of points in an ambient space referred to as the functional
space. Upon definition of a distance function between points,
either metric or pseudometric—normally expressing similarity
of signal behavior the cloud of points is assumed to be confined
to a manifold. Since the manifold is likely to be expressed in
a high-dimensional ambient space, and also likely to have
an intrinsic high dimensionality, a projection to a lower dimen-
sional space is then sought for visualization purposes as exem-
plified in Fig. 10. Intuitively, a manifold is a surface that is
locally flat. Formally, a k-dimensional set is a manifoldM ⊂ Rn,
with Rn being the ambient space, if for every point x ∈ M
it holds that there exists an open set U that contains x (i.e., a
neighborhood of x), an open set V ⊂ Rn (flat “equivalent” of

the neighborhood U) and a diffeomorphism h: U → V such
that hðU ∩MÞ¼V ∩ ðRk×f0gÞ¼fy∈Vjykþ1 ¼ : : : ¼ yn ¼ 0g.
When a smooth manifold, embedded in a space of positive sig-
nature, e.g., the ambient space is Euclidean, is enriched with a
distance function, it takes a particular geometry. The manifold
then becomes a Riemannian, when the distance function is
metric, or pseudo-Riemannian manifold otherwise respectively.
The current version of ICNNA provides the following options
for the distance function; Euclidean, one minus correlation, and
the square root of the Jensen–Shannon divergence. For each of
these, the manifold can be observed using the ambient distance
or the geodesic (along the manifold). In earlier works, Friston
et al.42 opted for the one-correlation whereas we opted for the
geodesic.22

The projection or embedding to a lower dimension permits
also a number of mappings depending on the point of view of
the observer. ICNNA provides two basic projections: classical
multidimensional scaling and curvilinear component analysis.

Fig. 11 Graph theory-based analysis in ICNNA for the analysis of connectivity.21 Top row: the activity
matrix (left) and the scaling matrix (right). Bottom row: the channel correlation matrix (left), the weighted
matrix (center), and the final adjacency matrix (right). For the correlation matrix (bottom left), color is
proportional to the correlation value. Then, the matrix of correlation is constrained using a scaling factor
derived from the activity matrix (top left). In ICNNA, the survival of edges is dictated by activity of the
channels linked by the edge, which may be treated as “strict” (both hemoglobin species are requested to
show statistically significant trend—i.e., only red patterns of the activity matrix are considered), “half-
strict” (at least on hemoglobin species is requested to show statistically significant trend—i.e., red or
pinkish patterns of the activity matrix are considered), and “loose” (hemoglobins are requested to
show a trend in the correct direction but statistical significance is not requested—i.e., red, pinkish or
white patterns of the activity matrix are considered) according to the user preferences. For each potential
edge between any two pair of nodes (channels), the two channels on each end brings a scaling factor
proportional to its activity pattern, and the product of the two factors yield the final scaling factor (top right)
modulating the cross-correlation values for the edge and dictates surviving edges. Color in the weighted
matrix (bottom center) represents a scaled version of the correlations given the constraint. Finally, the
weighted matrix is thresholded to obtain the adjacency matrix (bottom left); surviving edges are repre-
sented in white and pruned edges in black. Like with any other analysis approach, understanding the
implications and assumptions of the approach is critical to decide on any preceding processing.47
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The combination of the distance function and the projection
chosen determines the manifold embedding approach. The inter-
ested reader can find excellent reviews of data dimensionality
reduction techniques somewhere else.43,44

Analysis is not confined to the basic analytical path and
can be flexibly done by channels, blocks, full neuroimages,
or even groups. Alas, interpretation of the functional space is
challenging. To alleviate this effort, ICNNA provides some
exploration capabilities as illustrated in Fig. 10.

5.4 Graph-Theoretical Analysis

Graph theory has become a highly popular analysis approach to
explore connectivity.45 A graph G, which is also a topological
object like the manifold, is a set of edges E defined as a rule of
association among a set of entities V referred to as nodes of the
graph. A common formalization presents G as the pair hV; Ei;
with edges e ∈ E in turn pairs e ¼ fvi; vj ∈ Vg. In neuroimag-
ing analysis, nodes typically correspond to brain regions and the
edges express aspects of the connectivity—the type of connec-
tivity being encoded depending on the underlying type of graph
and how this matches neurophysiological constructs. Then,
summary metrics of the graph, e.g., diameter, degree of the
nodes, permits expressing powerful concepts of brain behavior
e.g., workload and/or cognitive burden21 and/or topological
features of the brain function, e.g., its small-worldliness.46

Its application to fNIRS has been less popular compared with
fMRI because some of the metrics describing the graph proper-
ties work better (are less biased) with large graphs. Nevertheless,
ICNNA—through the API only in the current version—also
offers graph-theoretical analysis of neuroimages. Among the
graph descriptors that ICNNA can produce are number of
edges, node degrees (in and out), density, clustering coefficient,
number of connected components, mean path length, node
weights, efficiency whether global or maximal, cost, and
economy. The calculation of the small world index is trivial from
the former descriptors. An example of the adjacency matrix cal-
culated in ICNNA is shown in Fig. 11. Graphical depiction of
network data between brain regions is presently conducted out-
side the ICNNA environment; however, there are convenient
export functions for alternative graphical packages (e.g., Pajek).

6 Conclusions
ICNNA has in the last few years grown to become a versatile
analytical tool. Structurally, we highlight what we consider are
two key features of ICNNA; putting the experiment as the
central element of the ICNNA document and the intermediate
experiment space that facilitates different types of analysis.
In terms of analytical capabilities, we highlight its flexibility
incorporating the common statistical analysis as well as the
graph-theoretical-based analysis, but uniquely (as far as we are
aware) providing the mathematically sophisticated manifold-
based analysis and interestingly capitalizing on the same data
structures. The key to manifold-based modeling is to find a
continuous association between the observations and the neuro-
scientific construct of interest; usually in two steps; projection to
an ambient space and definition of a geometry by means of a
distance function (although some manifolds do exist outside
any ambient space). Manifolds are highly flexible—there is a
wide family of manifolds each with different properties—and
expressive—capable of encoding local and global properties
of data—mathematical objects. This makes manifolds a conven-
ient tool potentially capable of supporting modeling different

functional phenomena and quickly allowing exploration and
understanding of the full experiment dataset at different zoom
levels. The latter is not often easy for more traditional appro-
aches. Because of the interest in our group, we have prioritized
the analysis of connectivity and longitudinal changes. But segre-
gational analysis is also plausible (a synthetic point representing
the convolution of the hemodynamic response to the stimulus
train can be projected to the manifold to establish the region
of the manifold where activity is encoded) though not included
in ICNNA.

In its current version, ICNNA has some limitations that we
look to attend in the future. The statistical analysis can be
improved in several ways. The activity matrix is returned with-
out correction for multiple comparisons. Although encoding
timelines of event-related or mixed-event block designs is
possible, the current activity matrix assumes block design.
Contrasts (e.g., task 1 > task 2) are not currently available. We
are now expanding our manifold-based modeling in three major
directions. First, substituting the current orthogonal projection
for a projection based on Fourier decomposition mapping to
a cylinder manifold encoding the familiar phase and frequency,
which we hope shall facilitate interpretation. Second, optimizing
the choice of the neighborhood size defining the solution using
persistent homotopies.48 Third, by exploiting causal Lorentzian
manifolds to express effective connectivity. Also, we are further
exploring other computational approaches for modeling connec-
tivity based on probabilistic graphical models20 that we hope to
incorporate to ICNNA soon. Graph-theoretical analysis is avail-
able only by using the command line and it would be convenient
to have a GUI, and integrating graph matching capabilities
remains. Finally, we are improving the semivirtual registration
tool, substituting the hemispheric model for a head model, and
validating the approach.

For brevity, we have not included an additional section exem-
plifying some of the analysis and results that we have obtained
with ICNNA in the past; however, all of the figures included in
the paper correspond to unpublished material from our group.
We have also kept mathematical formulation to a minimum to
give priority to the software application itself, since the math-
ematical details have been already published in earlier works by
our group. The ICNNA latest version is available from Ref. 49.
The software is provided as is, and is given free for academic use.
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