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Abstract. Working memory deficit is a signature of Alzheimer’s disease (AD). The free and cued selective
reminding test (FCSRT) is a clinical test that quantifies memory deficit for AD diagnosis. However, the diagnostic
accuracy of FCSRT may be increased by accompanying it with neuroimaging. Since the test requires doctor–
patient interaction, brain monitoring is challenging. Functional near-infrared spectroscopy (fNIRS) could be
suited for such a purpose because of the fNIRS flexibility. We investigated whether the complexity, based
on sample entropy and multiscale entropy metrics, of the fNIRS signal during FCSRT was correlated with
memory deficit in early AD. fNIRS signals were recorded over the prefrontal cortex of healthy and early AD
participants. Group differences were tested through Wilcoxon–Mann–Whitney test (p < 0.05). At group level,
we found significant differences for Brodmann areas 9 and 46. The results, although preliminary, demonstrate
the feasibility of performing ecological studies on early AD with fNIRS. This approach may provide a potential
neuroimaging-based method for diagnosis of early AD, viable at the doctor’s office level, improving test-based
diagnosis. The increased entropy of the fNIRS signal in early AD suggests the opportunity for further research on
the neurophysiological status in AD and its relevance for clinical symptoms. © 2017 Society of Photo-Optical Instrumentation

Engineers (SPIE) [DOI: 10.1117/1.NPh.5.1.011010]
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1 Introduction
Alzheimer’s disease (AD) can be characterized by dementia that
usually begins with a slight failure of memory that slowly
becomes more acute.1 In fact, the International Working Group
on AD’s proposal for early diagnosis of AD considers the evi-
dence of significant and progressive episodic memory deficit as
the core diagnostic criterion. Thus, the aim of researchers is to
find efficient tests to detect early memory impairment to be used
in a clinical environment. Among the variety of tests to define
memory impairment, the free and cued selective reminding test
(FCSRT)2,3 is considered to be highly sensitive and specific in
distinguishing AD patients from healthy controls4 and people
affected by other forms of dementia.5 In addition, the test
makes it possible to differentiate patients at an early stage of AD
from mild cognitive impairment (MCI) patients’ nonconverters.6

During this test, 12 pictures of everyday life are shown to the
patient, which they are asked to memorize. After this encoding
phase, the participant has to recall all the figures previously
shown. If he is not able to remember all the figures by himself,
a cued recall phase follows, during which the doctor reminds the
participant the semantic field of each figure not retrieved. The
same procedure is repeated after 30 min. During this time, other
tests are administered to the patient. Failures in recalling the pic-
tures are considered highly significant for early memory impair-
ment. However, despite the validity of the FCSRT, it could be
very useful for the diagnosis of AD to overlap neuroimaging
techniques with the administration of the test.

So far, working memory (WM) has been investigated
using different neuroimaging techniques, such as functional
magnetic resonance imaging (fMRI) and positron emission
tomography (PET).7,8 However, for the administration of the
FCSRT, the doctor is required to sit next to the patient and inter-
act with him. Therefore, it is not possible to perform the task in
an fMRI scanner. Furthermore, performing this test lying
down in a scanner would not be comfortable for the patient,
and the result of the test could be invalidated. Moreover, this
test is widely used for ambulatory patients, thus the employment
of a portable technique is advantageous with respect to the
fMRI.

Therefore, to preserve the interaction between the doctor and
the patient, and the ecological conditions of the FCSRT, in this
study we used functional near-infrared spectroscopy (fNIRS) as
it is more suitable for this type of application.

fNIRS is a noninvasive hemodynamic-based neuroimaging
technique that measures the relative changes in concentration
of oxygenated (HbO) and deoxygenated hemoglobin (Hbb) sec-
ondary to neuronal activity. Given its better spatial resolution9

and lower sensitivity to motion artifacts compared to electroen-
cephalography (EEG), and due to its portability and light
weight,10 this technique is very suitable for ecological applica-
tions, such as a clinical interview.

fNIRS has already been proposed to study AD patients. For
example, it was used to investigate visuospatial deficits11 and
different brain responses to a verbal fluency task (VFT) in
healthy individuals and AD patients.12–14 In particular, it was
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shown that a change in the cortex oxygenation could be due to
an alteration of the regional brain functions or to deteriorated
neurovascular coupling. In addition, fNIRS was also employed
for monitoring the effect of cholinesterase inhibitors on AD
patients during a VFT,15 demonstrating a variation in the oxy-
genation of the prefrontal cortex and the areas involved with
speech processing. Furthermore, differences between healthy,
MCI, and AD patients16 were investigated using fNIRS, making
the potential relevance of this technique for the diagnosis of the
AD undeniable.

Researchers argued that the complexity of a biological
system output could change with age and disease.17–20

Complexity can be defined as the difficulty of predicting a signal.
Along the same line, we hypothesized a change in fNIRS signal
complexity due to neurovascular coupling dysregulation related
to the task and to the disease. Thus, we investigated how the com-
plexity of an fNIRS signal changed between healthy adults and
patients. In particular, we used the sample entropy (SampEn)21

and the multiscale entropy (MSE)22 as metrics for the complexity.
For instance, SampEn was used to study the nonlinear

properties of heart rate (HR) time series23,24 in neonates to
evaluate the reduced variability of HR in the course of neonatal
sepsis, and in adults, to investigate the obstructive sleep
apnea syndrome.25 In addition, it was used to evaluate the com-
plexity of fMRI signal in patients affected by attention-deficit
hyperactivity disorder26 and in patients with schizophrenia
during a social task.27 With regards to AD, it was used to ana-
lyze background brain activity through magnetoencephalogra-
phy (MEG)18 and EEG signals.19,20

If we consider the fNIRS signal from an information
viewpoint, it is a nonstationary and nonlinear time series and
its entropy can thus be used to discriminate among different
healthy brain states. In particular, in this study, a complexity
analysis was carried out to distinguish early AD patients from
healthy people. This problem has been tackled already by sev-
eral researchers, but, to the best of our knowledge, this is the first
time that this kind of analysis has been performed on fNIRS
signals recorded during a WM test in completely ecological
conditions. The possibility of using this complex analysis as
an indicator of early AD could support the traditional clinical
diagnosis of this dementia. Because of the dysregulation in
neural responses in patients affected by AD, we expected the
patients with AD to exhibit higher complexity than healthy
controls.

2 Materials and Methods

2.1 Participants

Eleven healthy participants (mean age� SD: 67.5� 5.0 years;
8M/3F) and eleven early AD patients (mean age� SD: 72.2�
4.5 years; 7M/4F) voluntarily participated in this study. The
inclusion criterion was a diagnosis of mild probable AD,
according to the Diagnostic and Statistical Manual of Mental
Disorders, fifth edition. The exclusion criteria were: moder-
ate–severe cognitive impairment (mini-mental state examination
<25∕30),28 vascular dementia (excluding those based on clinical
and neuroimaging evaluation), behavioral disorders, hydro-
cephalus or space-occupying lesions documented by neuroi-
maging techniques, psychiatric disorders, or a history of
stroke or traumatic brain injury. The Research Ethics Board of
the University of Chieti-Pescara approved this study and it was
performed in agreement with the Declaration of Helsinki. All

participants signed informed consent and could withdraw
from the study at any time.

2.2 Free and Cued Selective Reminding Test

This test was proposed by Buschke,3 and it was validated for AD
diagnosis by Lemos et al.2 This test is composed of an encoding
phase, in which the participant has to memorize different fig-
ures, and an immediate and a delayed recall during which the
participant has to name the figures previously seen. In the
encoding phase, 12 selected stimulus figures are presented, 4 at
a time on a sheet, 1 figure per quadrant. The subject is required
to indicate and mention aloud each illustration after the experi-
menter verbally discloses the semantic cue of each of them.
After this phase, three immediate recall trials follow. Every
trial is preceded by 30 s of countdown to prevent recall from
short-term memory. In this phase, the subject is asked to freely
recall the items within 2 min [immediate free recall (IFR)]; next,
the experimenter reminds the subject of the semantic cues of any
items not freely retrieved [immediate cued recall (ICR)]. If the
participant does not remember the figures with the cue, the
experimenter reminds the subject of the images, providing him
with both the items and the cues. The total recall is the sum of
the free and cued recall. After 30 min, during which the subject
has to perform nonverbal tasks, the same procedure of recall is
carried out again [delayed free recall/delayed cued recall (DFR/
DCR)]. The nonverbal tests29 used to separate the immediate
and the delayed recalls are: clock drawing test (CDT),30 digit
span test (DST),31 Corsi span test (CST),32 trial making test
(TMT) (versions A and B),33 and Benton test (BT).34

During the administration of FCSRT, a rest period (RP) of
1 min between two different tasks was added to the original
structure of the test to reset the brain activity. The experimental
design is shown in Fig. 1.

2.3 Functional Near-Infrared Spectroscopy
Measurement

To measure the cerebral hemodynamic, a commercial frequency-
domain near-infrared spectroscopy instrument (Imagent, ISS Inc.,
Champaign, Illinois) was used. This instrument is made up of 32
laser diodes sources, 16 emitting light at 690 nm and 16 at
830 nm, and 4 photomultiplier tubes (PMT). The light is modu-
lated at 110 MHz, while the PMTs are at 110.005 MHz. Time
multiplexing was employed for the sources during the testing
(switch mode: 16; sample frequency: 10 Hz). The light power
emitted by the sources on the scalp of the participants is lower
than 4 mW∕cm2, with respect to the American National
Standards Institute standard limits and allowed for safe acquisition.

Nine sources for each wavelength and four detectors
were used, resulting in 17 measurement channels in a multidis-
tance configuration (3 to 4 cm). To ensure the comfort of the
patients, a helmet with fixed holes for the fibers was used,
positioned according to the international 10–20 electrodes
placement system.35 The brain areas involved in memory defi-
cits, as well as in impaired abstract thinking and inhibition, are
Brodmann areas (BA) 8, 9, and 47.36 We tried to find the best
compromise between covering the brain areas involved in this
function and the fixed positions of the holes for the fibers. The
best solution we found is presented in Fig. 2. The lowest detec-
tor is positioned in correspondence with the Fp point, according
to the 10–20 system,35,38 and the channels cover BAs 8, 9, 10,
and 46.
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2.4 Processing of Functional Near-Infrared
Spectroscopy Data

The quality of the signals was first checked to discard channels
with a low signal-to-noise ratio. The signals were checked by
visual inspection and evaluating the correlation between HbO
and Hbb; if it was positive, the channel would have been dis-
carded. All channels showed good scalp coupling due to the
placement over the forehead, so none were discarded across
all the participants. For the preprocessing, the Homer2 NIRS
Processing package39 was used.

The intensity signals were converted into optical density
(OD). Motion artifacts were identified as a signal change >10%
of the standard deviation (SD) over a period of 1 s. These

artifacts were corrected using a wavelet-based correction algo-
rithm.40,41 The signals were bandpass filtered (third-order
Butterworth filter, cutoff frequencies: 0.01 to 0.4 Hz) to reduce
systemic noises, such as heart and breathing rates. Then, the OD
signals were converted into HbO and Hbb signals through the
modified Beer–Lambert law (differential pathlengths factors = 6).

2.5 Calculation of Sample Entropy

The complexity of a signal and the randomness of a process
could be calculated by using several nonlinear time series analy-
sis techniques, such as the computation of the entropy of the
time series. Various typologies of this notion are known in lit-
erature. In this study, we used the SampEn,21 which is defined as

Fig. 2 (a) Channels configuration plot using NIRS-SPM software37 and (b) schematic optodes placement
and channels distances.

Fig. 1 Experimental protocol: FCSRT with rest periods and filler tests added.
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the negative natural logarithm of the conditional probability that
signals subseries of length m (pattern length) that match point-
wise within a tolerance r (similarity factor) also match at the
mþ 1 point.22

The SampEn of a time series {x1; : : : xN} of length N can be
evaluated by the following set of equations:26

EQ-TARGET;temp:intralink-;e001;63;686SampEnðm; r; NÞ ¼ − ln

�
Umþ1ðrÞ
UmðrÞ

�
; (1)

EQ-TARGET;temp:intralink-;e002;63;642UmðrÞ ¼ ½N −mτ�−1
XN−mτ

i¼1

Cm
i ðrÞ; (2)

where

EQ-TARGET;temp:intralink-;e003;63;596Cm
i ðrÞ ¼

Bi

N − ðmþ 1Þτ ; (3)

where Bi = number of j where djXi; Xjj ≤ r, Xi ¼
½xi; xiþτ: : : ; xiþðm−1Þτ�, Xj ¼ ½xj; xjþτ: : : ; xjþðm−1Þτ�, and i ≤
j ≤ N −mτ, j ≠ i.

In the equations, N is the number of the samples, m is the
length of the subseries considered, r represents the tolerance
within two subseries, which are considered equals, and τ is
the time delay expressed in the samples.

It is possible to evaluate SampEn over different time scales
using the MSE, after a coarse-graining procedure, hence using
values of τ ≠ 1. This consists of creating a new time series com-
posed of the mean value of a number of adjacent samples, with-
out overlap, equal to the established scale factor. Then, it is
possible to calculate the SampEn of each coarse-grained time
series.

The procedure to create a course-grained series is described
in the following equation:22

EQ-TARGET;temp:intralink-;e004;63;382yðτÞj ¼ 1

τ

Xjτ
i¼ðj−1Þτþ1

xi 1 ≤ j ≤
N
τ
: (4)

This could discern stochastic and noisy deterministic time
series, is quite robust for signals with a low level of noise
and artifacts and gives meaningful information with a limited
number of data samples.42

There are no guide lines agreed upon for choosing the best
parameter to compute SampEn for a biomedical signal, but it is
known from literature that a data length of 10m to 20m is nec-
essary, and the similarity factor has to be chosen as a percentage
of the SD of the signal under study (usually 0.1 to 0.35·SD).21

Thus, the correct choice of τ is important because the number of
samples of the course-grained series has to be higher than 10m to
20m, and the new sample frequency has to be higher than the
frequencies of the harmonics of the signal.43

We evaluated the SampEn and MSE of each channel both for
HbO and Hbb during the RP, IFR, and DFR phases. For the
resting period and IFR, we evaluated the mean value of the
SampEn and MSE computed for each repetition. According
to literature,21 the parameters chosen for the evaluation of
SampEn and MSE are

• m ¼ 2,

• r ¼ 0.2 SD, and

• τ ¼ ½2; 3�.

Given the limited length of the IFR and DFR phases, it is
impossible to investigate the complexity of the signal at larger
scales. Our analysis was thus limited to shorter scales. The time
durations of ICR and DCR are very brief, only a few seconds,
and sometimes these phases are not present for healthy controls,
making the evaluation of the SampEn and MSE of the fNIRS
signal during these phases meaningless.

2.6 Statistical Analysis

Wilcoxon–Mann–Whitney tests were performed to compare the
SampEn and MSE (τ ¼ 2 and 3) between the patients and
healthy controls for the RP, IFR, and DFR (p < 0.05), for
each channel’s HbO and Hbb signals.

A false discovery rate (FDR) for multiple comparison correc-
tion (q < 0;05) was applied to correct the p-values of the
independent Wilcoxon–Mann–Whitney tests in order to avoid
false positives. This approach is widely used for neuroimaging
data. It operates simultaneously on all channelwise test statistics.
It defines a corrected threshold to control the error rate and to
determine which tests have to be considered statistically
significant.44

The receiver operating characteristics (ROC)45 analysis was
performed for SampEn and MSE values on channels showing
significant differences between the control and AD groups.
ROC analysis was performed using the International Business
Machines Corporation Statistical Package for Social Sciences
(SPSS 21.0; New York).

To homogenize the metric labels, in Sec. 3, we consider
SampEn as MSE without resempling (τ ¼ 1).

3 Results
During the RP and IFR, the values of MSE (τ ¼ 1;2; 3) do not
show significant differences between healthy controls and
patients for all of the channels. MSE (τ ¼ 1) and MSE
(τ ¼ 2) during DFR show significant differences between the
two groups for the channels reported in Table 1. After the
FDR correction, only HbO Ch 15 and Hbb Ch 8 confirm stat-
istical differences. Patients exhibit higher values of entropy than
healthy controls, as shown in Fig. 3. MSE with scale τ ¼ 3 does

Table 1 Area under the ROC curves for the channels that show
significant difference between healthy controls and AD patients.

Hemoglobin Entropy Channels AUC

Wilcoxon–Mann–
Whitney (p < 0.05)

z-scores
Significance
(p-values)

HbO MSE (τ ¼ 1) Ch 8 0.785 2.2326 0.03

MSE (τ ¼ 2) Ch 4 0.760 2.0356 0.04

Ch 15a 0.826 2.5609 0.01

Hbb MSE (τ ¼ 1) Ch 8 0.785 2.2326 0.03

MSE (τ ¼ 2) Ch 4 0.769 2.1013 0.04

Ch 8a 0.818 2.4953 0.01

Ch 15 0.760 2.0356 0.04

aSurvived to FDR correction.
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not show significant differences between patients and healthy
groups for DFR. Using Brodmann’s Atlas, we found that chan-
nels that showed a significant difference between the two groups
cover Broadmann areas 9 and 46. The areas of the brain for
which there are distinctions between healthy controls and
patients are shown in Fig. 4.

Table 1 reports the area under the ROC curve for the channels
that exhibit significant differences between the two groups, and
Fig. 5 shows the ROC curves underlying the higher
area under the curve (AUC). They were obtained for Ch 10 dur-
ing the DFR phase for MSE (τ ¼ 2) on the Hbb signal

(cutoff ¼ 0.3843, sensitivity ¼ 0.727, 1-specificity ¼ 0.091)
and for Ch 18 during the DFR phase for MSE (τ ¼ 2)
on HbO signal (cutoff ¼ 0.3159, sensitivity ¼ 0.909,
1-specificity ¼ 0.182).

4 Discussion
The aim of this study is to demonstrate the feasibility of a com-
plexity analysis approach for fNIRS signals collected during
ecological conditions to discriminate healthy controls and AD
patients. In particular, according to the hypothesis that aging
and disease lead to different complexity outputs of a system,
we analyzed the complexity of HbO and Hbb signals using
SampEn and MSE algorithms during the IFR and DFR phases
of the FCSRT for both healthy controls and patients. This was
done to discriminate between the two groups.

Typically, block or repeated event paradigms are used for
fNIRS studies and general linear model or block averaging-
based analyses are carried out. Unfortunately, because of the
ecological paradigm, this kind of analysis was not feasible in
this study. In fact, the timing of the test is not fixed, but is subject
dependent. In the FCSRT, only the maximum time of the free
recalling phase is fixed, and its duration depends on the perfor-
mance of the subjects. Moreover, the subject can name the pic-
tures whenever he feels ready during the available time, without
a predetermined timing. It is thus impossible to create a proper
design matrix and properly model the expected functional
response. Therefore, it is necessary to investigate the possibility

Fig. 3 Boxplot of MSE (τ ¼ 2) for (a) Ch 15 oxyhemoglobin during DFR and (b) Ch 8 deoxyhemoglobin
during DFR.

Fig. 4 Channels that show a significant difference between the two
groups through Wilcoxon–Mann–Whitney test (p < 0.05) survived to
FDR correction for (a) DFR, MSE (τ ¼ 2), oxyhemoglobin and
(b) DFR, MSE (τ ¼ 2), deoxyhemoglobin.

Fig. 5 (a) ROC curve for MSE (τ ¼ 2) of Ch 15 oxyhemoglobin during DFR and (b) ROC curve for MSE
(τ ¼ 2) of Ch 8 deoxyhemoglobin during DFR.
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of using a different approach for signal analysis, such as a com-
plexity investigation.

The main finding of the present study is that significant
differences for MSE (τ ¼ 1) and MSE (τ ¼ 2) between AD
patients and healthy controls performing the FCSRT, during
the DFR phase, were observed in the salient region involved
in this kind of task, as shown in Table 1. After the FDR correc-
tion, only MSE (τ ¼ 2) gives some significant results. More pre-
cisely, patients with AD exhibit higher values of entropy than
controls (Fig. 4). This analysis can discriminate BAs 9 and
46 (Fig. 4), regions involved in WM tasks.36 This result confirms
the hypothesis that brain signals from AD constitute a dysregu-
lation of neurological patterns and that there is an increase in
complexity, as demonstrated by Vaillancourt and Newell.17

MSE with τ ¼ 3 does not seem to be significant for this kind
of analysis. This is probably caused by the limited number of
samples or by the specific dysregulation of these brain areas,
which have a temporal structure that requires shorter temporal
scales.

Complexity analysis of brain signals for patients with AD has
been already carried out by several authors. Gómez et al.18 found
that MEG signals from patients are less complex than controls
during resting state. Deng et al.46 have the same findings on
EEG signals. According to the literature, an increase in the com-
plexity of fNIRS signal is observed during the performance of a
mental arithmetic task47 and during a WM task48 with respect to
the RP for healthy people. Conversely, we did not find signifi-
cant differences between the two groups for SampEn and MSE
during the rest phase. This might be due to the limited length of
this phase and, therefore, the limited number of samples. On the
contrary, the higher complexity of patients with respect to
healthy people observed during DFR could be a result of a dys-
function in the neurovascular coupling in the frontal area due to
the task and to the activation of these brain regions. In fact, cer-
ebral blood flow (CBF) depends on the brain activity, and it is
regulated by the coordinate action of neurons, glia, and vascular
cells. When neurons are activated, various vascular changes are
elicited and lead to CBF increases in the activated area.49 In AD
patients, there is deposition of amyloid β-peptide in neuropil and
vessels, so neurovascular coupling is disrupted and CBF is not
appropriate to support the metabolic demand of the tissue.49

It is also possible that the increased complexity observed in
our study is caused by a degradation of functional neural con-
nectivity. For example, Pijnenburg et al.50 found a loss of con-
nectivity during a WM task using MEG signals on AD patients.
Stam et al.51 observed a loss of small-world network character-
istics in AD patients using EEG, and Supekar et al.52 had the
same findings in fMRI.

We found similar results for both HbO and Hbb. This finding
could be considered relevant because these two signals are
physiologically anticorrelated, hence, their predictabilities
should be almost the same. In fact, we would suppose to find
similar values of entropy for both the time series.

The ROC analyses show that the MSE (τ ¼ 2) evaluated on
Ch 8 and 15 can discriminate AD patients from healthy controls
because of its higher area under ROC curve (Table 1). They are
placed over BA 46 and BA 9, respectively.

Even though our results are preliminary, this study demon-
strates that it is possible to use the SampEn and MSE to dis-
criminate efficaciously healthy people from AD patients during
ecological protocols. In particular, to the best of our knowledge,
it is the first time that the fNIRS signal was collected during the

administration of the FCSRT in a clinical condition, giving a
physiological correlation to the diagnosis of AD obtained by
this test. Due to fNIRS’ portability and it being noninvasive,
this technique could become an important support for the diag-
nosis of AD.

One limitation of our study is the limited sample size and the
limited length of the fNIRS signal. However, it is due to the
test’s structure and to its ecological features. In fact, probably
because of the restricted number of samples, we were not able to
find differences during the RP.53 In our future studies, we will
enlarge the sample size of the rest phase to obtain more useful
information to better discriminate AD patients from healthy
controls.

We will also combine fNIRS with other neuroimaging tech-
niques to investigate which one would be more effective in
assessing regional differences in the brain in terms of sensitivity
and specificity. Furthermore, we plan to investigate the com-
plexity of the HbO and Hbb signals by testing different param-
eters, in particular regarding the similarity factor, for the
calculation of the entropy, in order to find the best parameters
settings for HbO and Hbb. In addition, it could be of great inter-
est to study the systemic contribution to the complexity of the
fNIRS signal, measuring some physiological signals (i.e.,
breathing rate and HR) and placing short separation channels.

5 Conclusions
To the best of our knowledge, this is the first study investigating
the complexity of brain fNIRS signals in patients with AD dur-
ing the administration of FCSRT, in completely ecological
conditions.

The results show that MSE with scale τ ¼ 2 is appropriate to
investigate brain signal complexity for this kind of task. AD
patients show higher values of entropy than healthy controls
during DFR phase in BAs 9 and 46. These results are consistent
with the hypothesis that AD may be characterized by a dysre-
gulation of complex functional networks and support the
hypothesis of a complexity variation with age or disease of
biological systems.
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