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ABSTRACT. Purpose: Uncertainty estimation has gained significant attention in recent years for
its potential to enhance the performance of deep learning (DL) algorithms in medical
applications and even potentially address domain shift challenges. However, it is not
straightforward to incorporate uncertainty estimation with a DL system to achieve
a tangible positive effect. The objective of our work is to evaluate if the proposed
spatial uncertainty aggregation (SUA) framework may improve the effectiveness
of uncertainty estimation in segmentation tasks. We evaluate if SUA boosts the
observed correlation between the uncertainty estimates and false negative (FN)
predictions. We also investigate if the observed benefits can translate to tangible
improvements in segmentation performance.

Approach: Our SUA framework processes negative prediction regions from a seg-
mentation algorithm and detects FNs based on an aggregated uncertainty score.
It can be utilized with many existing uncertainty estimation methods to boost their
performance. We compare the SUA framework with a baseline of processing indi-
vidual pixel's uncertainty independently.

Results: The results demonstrate that SUA is able to detect FN regions. It achieved
F 4—0.5 0f 0.92 on the in-domain and 0.85 on the domain-shift test data compared with
0.81 and 0.48 achieved by the baseline uncertainty, respectively. We also demon-
strate that SUA yields improved general segmentation performance compared with
utilizing the baseline uncertainty.

Conclusions: We propose the SUA framework for incorporating and utilizing uncer-
tainty estimates for FN detection in DL segmentation algorithms for histopathology.
The evaluation confirms the benefits of our approach compared with assessing pixel
uncertainty independently.
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1 Introduction

The utilization of deep learning (DL) in pathology departments has the potential to significantly
improve patient care by supporting physicians with tasks such as providing melanoma diagno-
sis,' detecting breast cancer metastases,”™ and grading prostate cancer.’™® Nevertheless, DL sys-
tems for medical imaging are known to encounter generalization issues due to their sensitivity to
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outliers and domain shift, i.e., a change in the underlying data distribution.”!” This can be
encountered when an algorithm is deployed in a new medical center as well as in the same medi-
cal center over time.!' Relying solely on the DL output score to assess the reliability of the
predictions often does not work well due to the commonly observed over-confidence of such
algorithms.'? Therefore, developing and deploying new methods for assessing the dependability
of the DL predictions is essential for wider clinical acceptance of the technology.'® Uncertainty
estimation has been proposed as one of the solutions that could potentially improve the perfor-
mance and robustness of DL systems.'* However, deriving the maximum benefit of uncertainty
estimation in segmentation DL for digital pathology is a complex task requiring careful
evaluations.

This work focuses on DL application to breast cancer metastasis segmentation as this type
of cancer is one of the most prevalent cancers worldwide.'® To provide appropriate treatment,
it is crucial to determine if cancerous cells have spread to other organs and tissues. Typically,
the nearest lymph nodes are removed surgically, and tissue samples are fixed, sliced, and
stained with hematoxylin and eosin (H & E) to create glass slides. This procedure is referred
to as sentinel lymph node dissection. A pathologist then carefully examines the glass slides
or digitized whole slide images (WSIs) to detect potential tumor metastases. This can be a
labor-intensive and time-consuming process, particularly because multiple WSIs from each
patient may require examination.” Therefore, assistance from DL systems could prove to be
valuable.'®!8

We propose a spatial uncertainty aggregation (SUA) framework for improving the effective-
ness of uncertainty estimation of a DL model trained to segment breast cancer metastases in
lymph nodes. We hypothesize that the overall confidence of a neighborhood of pixels may con-
tain additional information; hence we aggregate segmentation predictions into regions and com-
pute an uncertainty measure for each of them. Our results show that utilizing spatial information
works better than considering pixels independently.

We focus on clinical relevance; hence in the evaluation of the proposed method we (a) fix the
segmentation threshold instead of relying on threshold-independent metrics and (b) work on false
negatives (FN) detection as this task often requires more time from pathologists than false
positive (FP) rejection. Importantly, the SUA framework is agnostic to the uncertainty estimation
technique and requires no intervention from pathologists. In the study, we utilize the deep
ensemble (DE) uncertainty estimation method'® due to the promising results exhibited in related
work."*?° Our experiments reveal a strong correlation between aggregated uncertainty and
incorrect segmentation, and we explore whether this information can enhance the performance
of a DL diagnostic system.

2 Related Work

Several techniques have been developed to estimate uncertainty in DL, such as test time
augmentations,”! Monte Carlo dropout,> and DEs." Previous studies have demonstrated the
usefulness of estimating uncertainty in computational pathology, in which a common strategy
involves identifying the most uncertain predictions for manual review by medical professionals,
allowing them to focus on challenging cases.”>** Similarly, uncertainty heatmaps can be gen-
erated and superimposed on the original image for visual inspection.”>?® The latter approach
can be valuable during the algorithm development phase, but it is impractical for pathologists
under time constraints in clinical production.

Alternatively, incorporating uncertainty estimates into the DL framework may not require
intervention from a physician. For example, previous works have examined the correlation
between estimated uncertainty and mispredictions'**° or outliers®” in classification, which could
be used to reduce the error in performance. In addition, combining uncertainty with the softmax
output may enhance the generalizability and robustness of DL-based classifiers for histopathol-
ogy applications.'* In segmentation, it has been shown that uncertainty can be used to filter out
FP prediction areas on digital pathology data.?® Our work falls under this direction of research as
it is focused on determining how uncertainty estimation could be used to refine the segmentation
predictions by detecting FNs.
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3 Method

3.1 Slide Heatmaps

The proposed SUA framework (see Sec. 3.3) involves, apart from the original WSI, two com-
puted scalar valued maps for each slide. The first is the pixel-wise softmax output from the seg-
mentation NN, which we refer to as the segmentation heatmap. The second map is the output
from the uncertainty estimation step with pixel-wise uncertainty values, referred to as the uncer-
tainty heatmap.

3.2 Negative Prediction Regions

The SUA framework targets the detection of FN regions. The analysis is performed for what we
denote as negative prediction regions (NPRs). An NPR is defined as a cluster of adjacent pixels
that have been classified as negative by the DL algorithm but are reasonable candidates for being
FN pixels. Notably, NPRs do not need to be adjacent to the areas that are already predicted
positive by the DL algorithm. NPRs are determined by locating groups of adjacent pixels that
are assigned a softmax value output by the DL. model within a chosen interval. The upper thresh-
old is the cutoff value for a positive prediction. The lower softmax bound is used to avoid exces-
sively large NPRs. Algorithm 1 provides a pseudo code for determining NPRs in a WSI. The
function for labeling the connected regions, i.e., the skimage.measure.label function from the
sklearn library,” is based on the work of Wu et al.** We explored the impact of different settings
of the lower threshold: 0.55, 0.65, 0.75, and 0.85.

The segmentation threshold is set to 0.95 in our study as this results in eight average FPs per
WSIs on the validation data. This decision was based on the free-response receiver operating
characteristic (FROC) metric,” which assesses the clinical relevance of metastases detection algo-
rithms. Therefore, the evaluated NPRs were built considering pixels with softmax scores in the
ranges of 0.55 to 0.95, 0.65 to 0.95, 0.75 to 0.95, and 0.85 to 0.95. We also experimented with
smaller NPRs, i.e., with softmax scores in the 0.55 to 0.65 and 0.65 to 0.75 ranges, but both SUA
and the baseline (see Sec. 3.4) showed substantially inferior performance; hence we excluded
them from the results. Figure 1 visualizes an example of a WSI with its NPRs.

Algorithm 1 Determining NPRs in a given WSI.

Input: segmentation Heatmap, lowerThreshold, upperThreshold

t1 « lowerThreshold

t2 « upperThreshold

binarySegmentation = (segmentationHeatmap > 1) & (segmentationHeatmap < t2)
nprislands = skimage.measure.label(binarySegmentation, connectivity = 2)

Output: nprislands

Negative prediction regions

Original WSI

Fig. 1 Visualization of NPRs. The leftmost image shows a part of the original WSI, and the middle
one shows the segmentation heatmap produced by a DL model. In the rightmost image, NPRs are
visualized in different colors. They are determined by finding adjacent pixels that are assigned
a segmentation softmax score in a predetermined range (0.55 to 0.95 in this example).
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Fig. 2 Outline of the SUA framework that utilizes spatially aggregated uncertainty to identify FNs.

3.3 Spatial Uncertainty Aggregation framework

Figure 2 shows the SUA framework. Given a segmentation algorithm and uncertainty estimation
method, segmentation and uncertainty heatmaps are generated. As discussed above, two thresh-
olds are employed to create NPRs: the upper threshold identifies pixels predicted to be of a
positive class, whereas the lower threshold is utilized to restrict the NPRs’ areas. Within NPRs,
the uncertainty values are aggregated and applied to distinguish between true negative (TN) and
FN predictions. We evaluate two different aggregation functions: the average and the 90th per-
centile of the values. Note that any uncertainty estimation technique can be utilized in the SUA
framework. If the resulting aggregated uncertainty score is above a set threshold, the NPR is
marked as an FN region. This threshold is empirically determined on validation data.

3.4 Baseline

To evaluate if we benefit from having the spatial information in the proposed SUA framework,
we compare its performance with a baseline in which all pixels and their corresponding entropy
scores are treated independently, that is, the baseline is the direct utilization of the underlying
uncertainty method. It is computed for the same pixels as those in NPRs used by the proposed
SUA method.

4 Implementation Details and Data

4.1 Segmentation NN

The segmentation neural networks (NNs) used in this study were built upon the DenseNet
architecture®! and closely followed the implementation in previous work.'®3? During training,
the ADAM optimizer with #; = 0.9 and , = 0.999 was utilized, and the initial learning rate was
set to 0.01. In case there was no improvement on the validation data for 20 consecutive epochs, a
learning rate decay of 0.1 was applied. To reflect the clinical situation in which negative slides are
much more common than positive ones, the training process used four times more healthy slides
than tumor patches.'®3? In addition, the training augmentations closely followed the recommen-
dations by Tellez et al.” Each model was initialized with the He initialization scheme®* using a
different random seed, and the maximum training limit was set to 250 epochs but stopped earlier
if convergence was observed. To segment tumor areas in lymph node WSIs, we trained five
segmentation NNs with different random seeds and averaged their softmax score predictions
per pixel. We needed five NNs to estimate the uncertainty of the prediction; see the next section.

4.2 Uncertainty Estimation

In our experiments, the DEs uncertainty quantification method' is used to estimate the epistemic
uncertainty for each pixel. This requires an ensemble of identical NNs with different random
seeds. We used an ensemble of five NNs. To quantify the uncertainty from the multiple predic-
tions, we adopted an entropy measure.>* Specifically, for a random variable X with possible
outcomes x;,i € {0,1,..}, the entropy is defined as follows:

H(X) = _Zp(xi)logp(xi)?

which we approximate as proposed by Gal et al,>® that is, x; in our case represents an average
softmax prediction by the ensemble for class i and the entropy is computed for each pixel

independently.
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In addition to the ensemble setup described above, we tried several other alternatives to
explore whether other types of variability would improve the uncertainty estimation. We created
and evaluated several ensembles consisting of up to 13 NNs. The variation in the NNs was
introduced by different training strategies such as sampling different proportions of tumor versus
healthy patches and selecting different optimizers, i.e., RMSProp, Nadam, and SGD. However,
we observed no significant difference in the performance on FN detection. Therefore, we only
present the results acquired by utilizing the five identical segmentation NN trained with different
random seeds as described in Sec. 4.1.

4.3 Data

A total of 344 WSIs from the Camelyon Grand Challenge (CGC) dataset®® were utilized for
segmentation model development. Specifically, 271 WSIs (104 WSIs with tumor metastasis)
were used for training, and 73 WSIs (31 WSIs with tumor metastasis) were used for validation.
The split was done on the patient level. In addition, a set of 139 WSIs with 59 WSIs containing
tumor metastases was reserved for in-domain testing, which is referred to as the Camelyon data in
this study. The total number of WSIs taken from the CGC dataset was limited by the availability
of detailed annotations. For testing the model’s performance on domain-shift data, a subset of
164 WSIs (57 WSIs with tumor metastases) from the AIDA BRLN dataset®” was selected. In the
following sections, we refer to this dataset as the Sentinel data. All used datasets are publicly
available to be utilized in legal and ethical medical diagnostics research.

5 Experiments

We conducted two experiments that are briefly described below. The goal was to evaluate the
potential of the SUA framework to enhance the usefulness of the underlying uncertainty esti-
mates and investigate its practical impact on boosting the performance of segmentation NNs in
in-domain and domain-shift scenarios.

5.1 Experiment 1: Correlation Analysis

The primary objective of the first experiment is to determine whether there is a basis to assume
that spatially aggregated uncertainty improves the usefulness of uncertainty information. This
goal is accomplished by examining the relationship between the FN segmentation regions and
the spatially aggregated uncertainty, i.e., how well uncertainty correlates with incorrect predic-
tions. Initial investigations indicate that the vast majority of NPRs with at least one pixel incor-
rectly classified to be negative were comprised of more than 90% of misclassified pixels.
Consequently, we define FNs as NPRs with at least 90% missed tumor pixels. This means that
detecting these FN NPRs would not introduce many FP pixel predictions. The pixel-wise cor-
relation between uncertainty and FN predictions provided by the baseline method is reported for
comparison.

5.2 Experiment 2: Segmentation Heatmaps Refinement

The second experiment aims to assess the impact of the proposed SUA framework on the seg-
mentation performance of a DL system. This is accomplished by utilizing SUA FN detection for
refinement of segmentation heatmaps. If the spatial uncertainty value of an NPR exceeds a pre-
defined detection threshold, the prediction for that region is updated to be positive. This is com-
pared with the outcome of refining the prediction heatmaps using the independent pixel-wise
uncertainty of the baseline method. In this case, the softmax score of a pixel is updated if the
uncertainty of that pixel is above a pre-defined detection threshold. This is done without any
consideration to the other pixels that belong to the same NPR. In both cases, the optimal detec-
tion threshold is determined on the validation data.

5.3 Evaluation

In experiment 1, Fy_( 5 score is used to evaluate the ability to distinguish between FN and TN
regions. It is defined as™®
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precision - recall

- 2
Fp=1+F) (B* - precision) + recall
We set f = 0.5, which weights precision more than recall because having a high precision
reduces the risk of introducing a large amount of falsely segmented pixels.
In experiment 2, we do a threefold assessment of potential practical gains from utilizing the
FN detection for WSI segmentation refinement. First, the average Dice score over all WSIs in a
given dataset is compared before and after the refinement of the segmentation heatmaps. Given
the number of true positive (TP), FP, and FN pixel predictions, the Dice score is defined as>®

2-TP

DICE = .
2-TP+FP+FN

Due to the vast number of tumor pixels in WSIs and, in comparison, the small number of
pixels with updated predictions, the average Dice score alone may be incapable of revealing the
full impact of the refinement.*® To address this issue and enable a better comparison between the
baseline and SUA methods, we propose a metric called the false negative conversion rate
(FNCR). It quantifies what proportion of the updated negative-prediction pixels actually belong
to the positive class, that is, given a dataset Ax = {WSI,,..., WSIg} and the corresponding
refined segmentation heatmaps via the SUA framework or the baseline, the FNCR is defined as

K nji
iz VY
K ni 0
=1 V.

total

FNCR =

where N, is the number of pixels that were originally considered negative and correctly updated
to be positive, i.e., detected FNs, and NI is the total number of pixels updated in some
WSI; € Ag. If the FNCR is 1, it means that only FN pixels were updated, whereas having
an FNCR close to 0 indicates that the refinement mostly introduced FP predictions.

We also report the observed change in FROC-AUC? and ROC-AUC? after the refinement,
but we deem this to be the least informative approach. As our aim is to improve lesion segmen-
tation within a slide, this should have a minimal effect on ROC-AUC, which quantifies the per-
formance of classifying the WSIs. The problem with the FROC-AUC metric is that it determines
unique optimal thresholds for each dataset. The thresholds that we fixed based on the validation
data may be substantially different from the thresholds employed in the FROC-AUC computation
on the test sets. We argue that, in a clinical setting, an operating threshold needs to be fixed and,
hence, continuously adapting it to the incoming new data usually is unfeasible.

6 Results

6.1 Segmentation Performance

Table 1 shows that the ensemble achieved close to the state-of-the-art performance on the primary
task of breast cancer metastasis detection. The best reported result on the Camelyon16 Grand
Challenge is 0.81 FROC-AUC and 0.99 ROC-AUC;* however, our test data included images
from both the Camelyon16 and the Camelyon17 datasets. As expected, the performance dropped
on the domain-shift Sentinel data with a relatively large difference in the FROC-AUC value and
a smaller change in the ROC-AUC value and average DICE score.

Table 1 Lymph node metastasis in breast cancer segmentation results reported in ROC-AUC,
FROC-AUC, and average Dice scores. The mean and standard deviation (in brackets) values are
computed over the 1000 bootstrapped iterations.

Dataset FROC-AUC ROC-AUC Dice score
Camelyon 0.83 (0.05) 0.97 (0.02) 0.71 (0.02)
Sentinel 0.68 (0.10) 0.96 (0.02) 0.70 (0.03)
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6.2 Experiment 1

From the histograms in Figs. 3 and 4, we conclude that the separation between FNs and TNs
achieved by the 90th percentile and the average uncertainty aggregation approaches are similarly
good. Fy_ 5 scores computed on the validation data revealed that using average entropy resulted
in a marginally better performance. Hence, we report the results using the average uncertainty
aggregation approach in the remainder of the work. Figure 5 shows a corresponding histogram
using the baseline method, i.e., processing pixels entropy without spatial aggregation. Less sep-
aration between FN and TN predictions for the considered softmax score ranges is achieved in
this case.
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Fig. 3 Histogram of the 90th percentile entropy of the NPRs built using varying softmax ranges.
FNs are the islands that have at least 90% overlap with the ground truth tumor annotation.
Camelyon validation data.
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Fig. 4 Histogram of the average entropy of the NPRs built using varying softmax ranges. FNs
are the islands that have at least 90% overlap with the ground truth tumor annotation. Camelyon
validation data.
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Fig. 5 Histogram of the baseline pixel entropy divided between TN and FN predictions. Pixels
analyzed with softmax values in the ranges of 0.55 to 0.95, 0.65 to 0.95, 0.75 to 0.95, and
0.85 to 0.95. Camelyon validation data.
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Table 2 F;_,5 performance of FN versus TN differentiation on the Camelyon and Sentinel test
datasets. In the SUA method, an NPR is considered to be FN if it contains at least 90% tumor
pixels. The mean and standard deviation values are computed over the 1000 bootstrapped
iterations.

F 405 with softmax scores in ranges

Dataset Method 0.55 to 0.95 0.65 to 0.95 0.75 t0 0.95 0.85 to 0.95
Camelyon Baseline 0.71 (0.05) 0.74 (0.06) 0.76 (0.06) 0.81 (0.06)
SUA 0.92 (0.02) 0.91 (0.02) 0.89 (0.02) 0.73 (0.04)
Sentinel Baseline 0.42 (0.06) 0.43 (0.06) 0.45 (0.06) 0.48 (0.06)
SUA 0.86 (0.04) 0.85 (0.04) 0.83 (0.04) 0.64 (0.05)

Table 2 shows the Fjs_ys scores achieved by the SUA framework with different sizes of
NPRs and the baseline with a matching constraint on the softmax score of considered pixels.
It confirms the observation that aggregating uncertainty spatially results in a better separation
between TN and FN predictions in almost all considered scenarios. Overall, the highest mean
Fp_os scores on the Camelyon and Sentinel datasets of 0.92 and 0.86, respectively, were
achieved by the SUA framework.

6.3 Experiment 2

Table 3 summarizes how the average Dice score is affected by applying SUA and the baseline for
refinement of the segmentation heatmaps. We can see that updated heatmaps through the baseline
method systematically result in lower average Dice scores than the original predictions. The SUA
framework achieves higher average DICE scores than observed on the original predictions when
NPRs were computed using 0.55 to 0.95 and 0.65 to 0.95 softmax ranges on both test sets.
Figure 7 shows an example of a segmentation refined by applying the SUA framework.

The box plots in Fig. 6 summarize the results of the FNCR metric computed over 1000
bootstrap iterations. SUA achieved substantially higher median values in all scenarios compared
with the baseline. Domain shift has an impact on SUA effectiveness as the median values fall
from being between 0.98 and 0.95 on the Camelyon data to 0.94 and 0.82 on the Sentinel data for

Table 3 Average Dice score before and after segmentation refinement by the SUA and baseline
methods. The results are reported per considered softmax ranges, i.e., 0.55 to 0.95, 0.65 to 0.95,
0.75 to 0.95, and 0.85 to 0.95. The mean and standard deviation values are computed over the
1000 bootstrapped samples.

Dice scores after update, softmax in ranges

Dataset Method Original Dice 0.55 to 0.95 0.65 to 0.95 0.75 to 0.95 0.85 to 0.95
Camelyon Baseline 0.706 (0.023) 0.676 0.628 0.654 0.680
(0.025) (0.028) (0.026) (0.024)
SUA 0.709 0.709 0.706 0.700
(0.024) (0.024) (0.024) (0.024)
Sentinel Baseline 0.700 (0.026) 0.672 0.672 0.676 0.681
(0.028) (0.028) (0.027) (0.027)
SUA 0.704 0.703 0.702 0.695
(0.026) (0.026) (0.026) (0.026)
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Fig.6 FNCR achieved by SUA and the baseline on the Camelyon and Sentinel datasets with 1000
bootstrap iterations. The red horizontal line in each box indicates the median value. The results are
reported per considered softmax ranges, i.e., 0.55 to 0.95, 0.65 to 0.95, 0.75 to 0.95, and 0.85 to
0.95.

Table 4 Number of negative WSIs that had some FP areas introduced by the segmentation
refinement.

# WSis, softmax scores in ranges

Dataset Method 0.55 to 0.95 0.65 to 0.95 0.75 to 0.95 0.85 to 0.95

Camelyon Baseline 77 80 79 77
SUA 7 6 9 25

Sentinel Baseline 104 104 104 104
SUA 31 31 42 65

the considered NPRs. However, the effectiveness of the baseline in FN detection suffers a much
sharper drop due to the domain shift: from around 0.8 to around 0.4 on the Camelyon and
Sentinel data, respectively.

Table 4 shows the number of negative WSIs that had some FN areas introduced after the
refinement using the SUA and baseline methods. SUA incorrectly updated significantly fewer
such WSIs in all considered scenarios. In fact, the baseline method refined nearly all negative
WSIs in the Camelyon and Sentinel datasets, which have 80 and 107 negative WSIs, respectively.

There was no change in FROC-AUC or ROC-AUC observed from applying either of the FN
detection methods compared with the original segmentation results.

7 Discussion

In this study, we aimed to determine whether spatially aggregating uncertainty could improve the
ability to distinguish between TN and FN predictions in histopathology segmentation and bring
clinical value by refining the segmentation heatmaps. First, we examined whether regions with
incorrect negative predictions tended to have consistently different uncertainty values from the
correct predictions. Our findings from experiment 1 indicate a significant correlation between the
aggregated epistemic uncertainty over NPRs and FN predictions. Notably, we observed that
broader NPRs, i.e., based on softmax scores in the 0.55 to 0.95, 0.65 to 0.95, and 0.75 to
0.95 ranges, yielded higher Fy_( 5 scores than narrower regions (with softmax scores in 0.85
to 0.95 range), suggesting that combining more pixels improved spatial uncertainty estimates.
The baseline achieved substantially lower Fy_ 5 scores, confirming that it is advantageous to
incorporate the spatial information within the uncertainty estimation. Given our definition of FN
as containing at least 90% of tumor pixels, these results are highly promising, suggesting that

Journal of Medical Imaging 017501-9 Jan/Feb 2024 e Vol. 11(1)



spatial epistemic uncertainty could enhance the performance of a DL system for breast cancer
metastases segmentation.

To evaluate the practical benefits of FN-detection-based heatmap refinement compared with
utilizing the underlying uncertainty directly, we proposed the FNCR metric. The left plot in Fig. 6
indicates that the detected FN areas with the SUA framework enables a relatively successful
refinement of in-domain segmentation heatmaps with most bootstrap runs achieving an FNCR
of around 0.98 for NPRs with softmax ranges of 0.55 to 0.95 and 0.65 to 0.95. In all cases,
the baseline exhibited a substantially worse performance measured in the median FNCR.
Furthermore, the baseline also had a higher variability in its performance compared with the
SUA framework, as indicated by the length of the whiskers of the box plots. We conclude that
the SUA framework based on NPRs with softmax ranges of 0.55 to 0.95 and 0.65 to 0.95
performed best on the heatmap refinement task.

The lack of generalizability is a severe problem affecting DL for pathology applications;
hence an important question is if the SUA framework can to some extent mitigate the observed
negative effects on the performance from the domain shift. Based on relatively high F_ s scores
in Table 2, it seems that there is a possibility of successfully detecting FNs in the Sentinel data.
A drop in the median value of the FNCR is relatively small on the segmentation heatmap refine-
ment task for the domain shift for the NPRs with softmax ranges of 0.55 to 0.95, 0.65 to 0.95, and
0.75 to 0.95. The improvement in the average Dice score is slightly lower on the domain shift
data compared with the in-domain data (see Table 3). However, Table 4 reveals that a much
higher number of negative WSIs had some incorrect refinement done on the Sentinel data com-
pared with the Camelyon data. This is a worrying trend as increasing the number of false WSI
predictions would severely compromise potential clinical benefits of uncertainty integration.
We conclude that the utilized uncertainty estimation is sensitive to the domain shift and, hence,
may not be suitable in domain shift scenarios. This is consistent with observations in previous
studies.'**! Even if uncertainty estimation can bring tangible value under in-domain data
assumption, it is essential to have approaches that are able to handle the domain shift scenarios.
As our results indicate, unfortunately, the SUA framework is unable to address this problem.
Ensuring that uncertainty estimation is robust to domain shifts and hence helps to alleviate the
drop in performance due to poor generalization of the DL algorithms is a very important future
research topic.

It is challenging to evaluate what tangible benefits the incorporation of uncertainty with a DL
model may provide. The average Dice score seems to be insensitive to some changes in pre-
diction heatmaps. This may be caused by difference in the size of metastases, i.e., macro meta-
stases are very large and, hence, more easily detectable by DL algorithms and pathologists. The
average Dice score appears to primarily reflect the accurate segmentation of this type of meta-
stases. This is supported by the minimal difference in the average Dice score between unmodified
segmentation for the Camelyon and Sentinel datasets, whereas FROC-AUC indicates a signifi-
cant difference in segmentation performance between these two datasets. The observation is con-
sistent with prior work.*® It is difficult to say if the observed 0.003 Dice score improvement after
refinement with the SUA framework could bring some clinical value because the decrease of
0.006 in the average Dice score on the original segmentation of the Sentinel data when compar-
ing with the Camelyon data is also small.

Given the strong correlation between the SUA output and the regions with incorrect negative
predictions observed in experiment 1, the uncertain clinical benefit brought by the uncertainty-
based refinement in experiment 2 is a somewhat disappointing result, which highlights a potential
need for improving the underlying uncertainty estimation approach. This is a surprising finding
because several previous works reported promising performance of the DE uncertainty estima-
tion method. However, their evaluation primarily focused on the correlation between incorrect
predictions and the uncertainty values. Our study emphasizes the importance of evaluating the
clinical value by acting upon the uncertainty information.

It seems that we are able to fill in some missed gaps in the segmentation (see Fig. 7), but
ideally, we would aim to detect completely missed tumor metastases. However, defining what is a
missed metastasis is not straightforward. For example, how far should a missed metastasis be
from the correctly segmented one to have clinical relevance? If a patient has a macro metastasis,
micro metastases become less important for the diagnostic decision, whereas isolated tumor cells
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Fig. 7 Example of a refined WSI from the Camelyon data via the SUA framework based on NPRs
with the 0.55 to 0.95 softmax range. “Tumor mask” is the ground truth tumor annotation.

usually do not have any impact.*> How to incorporate this knowledge in the evaluation of missed
tumor metastases detection is an open question. Therefore, we believe that such a direction of
work is not only very important but also requires careful considerations and experimentation.
Hence, it could be the focus of future research.

A general challenge in computational pathology is to determine which evaluation metrics
represent well the clinical impact of an approach. The Dice score does not take into consideration
the prevalence of FP predictions, which can cause severe problems in clinical practice. To avoid
data leakage, we are not able to reliably use FROC-AUC either. It would require tuning the
segmentation threshold for each test data and using them in the heatmap refinement steps. We
consider such a process to be clinically unrealistic. Utilizing thresholds learned on validation data
resulted in no change in FROC-AUC and ROC-AUC after the refinement. Future work could aim
to propose metrics that would more closely represent performance from a clinical point of view.

As mentioned, our approach is appealing because it can generalize to different combinations
of DL architectures, targeted tasks in digital pathology, and uncertainty estimation techniques.
The results indicate that the chosen base uncertainty estimation method is not able to signifi-
cantly boost the DL performance on breast cancer metastasis segmentation in lymph nodes.
However, several other studies have shown the potential benefits of uncertainty estimation in
other DL applications in digital pathology.””** Hence, our observed improvement of utilizing
SUA compared with uncertainty estimation directly on in-domain data indicates that the SUA
approach could improve the obtained benefits from uncertainty estimation in the previously
studied scenarios.

There are several limitations of this work. Only one uncertainty estimation method, i.e., the
DE method, was tested with the SUA framework. Because the SUA framework is independent of
the uncertainty estimation approach, investigating alternative uncertainty estimation techniques
that are more suitable for computational pathology applications and that could be combined with
the SUA framework could provide an unquestionable clinical impact. We believe that this direc-
tion could prove valuable. Moreover, in this study, we focused on the breast cancer metastasis
segmentation task due to the clinical value of addressing this problem with DL assistance.
It would be valuable to confirm that the observed benefits apply to other important segmentation
tasks in digital pathology, such as nuclei segmentation.

8 Conclusion

Our analysis indicates that the SUA framework proposed for FN detection exhibits encouraging
outcomes on in-domain data, with a noticeable correlation between FN regions and the aggre-
gated uncertainty. Moreover, utilizing SUA for refinement of segmentation heatmaps further
confirms its potential benefits compared with utilizing the underlying uncertainty directly.
However, utilization of the chosen uncertainty estimation technique did not result in substantial
improvements on the segmentation outcome. This negatively affected the effectiveness of segmen-
tation refinement via SUA. We recommend future work to focus on determining a more robust
uncertainty estimation method to combine with the SUA framework as well as further improving
the evaluation approaches to quantify the potential benefits in realistic clinical settings.
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