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ABSTRACT. Purpose: We present a simulation-based feasibility study of electrical impedance
tomography (EIT) for continuous bedside monitoring of intracerebral hemorrhages
(ICH) and detection of secondary hemorrhages.

Approach: We simulated EIT measurements for six different hemorrhage sizes at
two different hemorrhage locations using an anatomically detailed computational
head model. Using this dataset, we test the ICH monitoring and detection perfor-
mance of our tailor-made, patient-specific stroke-monitoring algorithm that utilizes
a novel combination of nonlinear region-of-interest difference imaging, parallel level
sets regularization and a prior-conditioned least squares algorithm. We compare the
results of our algorithm to the results of two reference algorithms, a total variation
regularized absolute imaging algorithm and a linear difference imaging algorithm.

Results: The tailor-made stroke-monitoring algorithm is capable of indicating
smaller changes in the simulated hemorrhages than either of the reference
algorithms, indicating better monitoring and detection performance.

Conclusions: Our simulation results from the anatomically detailed head model
indicate that EIT equipped with a patient-specific stroke-monitoring algorithm is
a promising technology for the unmet clinical need of having a technology for
continuous bedside monitoring of brain status of acute stroke patients.
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1 Introduction
Stroke is the second leading cause of death and a major cause of disability worldwide.1

Intracerebral hemorrhage (ICH) accounts for about 20% of all strokes.1 ICH is associated with
higher mortality than ischemic stroke especially at the early stage.2 ICH is typically caused by
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disruption of cerebral arteries, which leads to bleeding into brain tissue. ICH harms the brain via
several different mechanisms,3 including the space-occupying mass effect in the acute phase, the
toxic effect of the degradation products from the lysed red blood cells, and the inflammatory
changes in the later stages. So far, there is no established outcome-modifying medical or surgical
treatment for the index ICH. However, one of the major challenges in the acute stage (within 36 h
from onset of ICH) is the risk of hematoma expansion and rebleeding.2 In such cases, intensive
conservative treatment, including controlled mechanical ventilation and optimized blood pres-
sure levels, and timely neurosurgical intervention are likely to be life-saving and even reduce
disability. Such intensive care is not risk free, and it should be reserved for patients that show
signs of hematoma growth and changes in the level of consciousness. In addition to patients with
hemorrhagic stroke, patients with thrombolysis-treated acute ischemic stroke have an increased
risk of cerebral hemorrhage as a complication of recanalization therapy. In both patient groups,
the decision to advance to intensive care has to be done promptly, and therefore, hematoma
expansion or rebleeding in ICH patients should be detected as soon as possible, optimally
immediately.

The monitoring of hemorrhagic stroke in the intensive care unit (ICU) is based mainly on
routine follow up of clinical signs and symptoms.2 However, evaluation of the vigilance of the
patient, as well as observing subtle neurological signs can be very challenging, particularly if the
patient is sedated and intubated. Currently, the most reliable way to monitor the progression of
hemorrhagic stroke is repeated CT scanning2 that requires the patient to be repeatedly moved
from ICU to CT and back. This is a demanding and time-consuming procedure and can even be
dangerous for the patient. Rarely, in some individual stroke centers, moving the patient can be
avoided if a bedside head CT scanner is available. Regardless, the selection of correct timing of
the control CT imaging is itself already a difficult problem and CT images provide only occa-
sional snapshots of the bleeding. A method for online bedside monitoring of hemorrhagic stroke
at the ICU would most likely positively affect patients’ prognosis as there would be no delays in
the detection of life-threatening complications and their care.

One potential bedside monitoring method is provided by electrical impedance tomography
(EIT). In the EIT measurement setup, small alternating currents are fed through electrodes
attached to the patient’s scalp, and the resulting voltages are measured on the electrodes. This
safe and radiation-free measurement is then used to compute a three-dimensional image of the
electrical conductivity of the brain, with hemorrhage showing as increased intensity with
respect to normal brain tissue in the image due to the high conductivity of blood. This type of
absolute imaging EIT has been investigated for early differentiation of stroke types, see e.g.
Malone et al.,4 Goren et al.,5 Horesh et al.,6 Candiani et al.7 for absolute imaging and Agnelli
et al.,8 McDermott et al.,9 Candiani et al.10 for machine learning-based approaches. However,
EIT-based stroke differentiation is very challenging due to the instability of the absolute imaging
EIT problem with respect to modeling errors, such as inexact electrode locations and head shape.
Furthermore, for differentiation, a very high sensitivity is required because even very small quan-
tities of blood should not be overlooked in clinical decision making. In a continuous bedside
monitoring setup, the EIT measurement is repeated at a later time, and a three-dimensional image
of the conductivity change of the brain between the measurements is computed. These types of
difference imaging EIT approaches are promising for monitoring of hemorrhagic stroke and
detection of secondary hemorrhages as they have good sensitivity, as suggested by simulation
studies by Shi et al.,11 animal studies by Xu et al.,12 and human studies by Dai et al.13 and Yang
et al.,14 and they are less prone to modeling errors.

In the envisioned EIT-based stroke monitoring setup, the patient is admitted to the emer-
gency department of the hospital because of symptoms of acute stroke. According to stroke treat-
ment protocol, a CT scan is taken immediately for diagnosis and timely beginning of suitable
treatment. The treatment of the patient continues in the ICU or in a stroke unit, where the EIT
measurement device is attached using something akin to an EEG electrode cap. The EIT mea-
surements, taken, e.g., every 2 to 10 min, and an imaging algorithm are then used to get snapshots
of the conductivity changes in the brain, indicative of changes in the hemorrhage, which would
indicate any immediate need for confirmatory CT imaging or medical intervention. The EIT-
based stroke imaging could also be used in a similar manner for monitoring of occurrence
of secondary hemorrhages in treatment of ischemic stroke patients. Furthermore, the CT image
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routinely taken at patient admission can be utilized for generation of a 3D computational model
of the patient’s head and for regularization purposes in the image reconstruction.

In this paper, we study the feasibility of EIT for monitoring and detection of ICHs with
simulated measurement data from an anatomically highly detailed head model. We compare the
performance of several inverse estimation methods for the monitoring task. We use the algorithm
first introduced by Toivanen et al.15 that has been constructed as a combination of the nonlinear
region-of-interest difference imaging approach by Liu et al.16 and the parallel level sets regu-
larization approach by Kolehmainen et al.17 In addition, it now also utilizes a prior-conditioned
least squares algorithm, see Arridge et al.18 and Harhanen et al.,19 for computationally efficient
solution of the lagged Gauss–Newton search direction for the minimization of the regularized
nonlinear least squares functional. Furthermore, a more advanced initial estimation approach is
used. We use an atomically detailed six-layered head model with intricate cerebrospinal fluid
and brain geometry that was first introduced by Paldanius et al.20 to simulate EIT measurements
with various ICH locations and volumes to test our stroke monitoring and detection algorithm.
The results with our new monitoring algorithm are compared to the results of two reference
algorithms, a total variation (TV) regularized absolute imaging algorithm and a linear difference
(LD) imaging algorithm.

2 Theory

2.1 Modeling of EIT Measurements

We model the patient’s head in the EIT measurement setup as a domain Ω ⊂ R3, and the
L electrodes attached to its surface with circular surface patches el, l ¼ 1;2; : : : ; L. During
the measurement, P patterns of currents, IðkÞ ∈ RL, k ¼ 1;2; : : : ; P, are consecutively injected
through the electrodes, and the corresponding voltagesUðkÞ ∈ RL are measured on all electrodes.

Here IðkÞl and UðkÞ
l denote the applied current and measured voltage from the k’th current pattern

on the l’th electrode for l ¼ 1;2; : : : ; L. Based on the conservation of charge and our choice of
electric potential ground, we have

EQ-TARGET;temp:intralink-;e001;117;394

XL
l¼1

IðkÞl ¼ 0
XL
l¼1

UðkÞ
l ¼ 0: (1)

The voltages UðkÞ
l are boundary measurements of the interior electromagnetic potential

uðkÞðxÞ that is modeled with the conductivity equation

EQ-TARGET;temp:intralink-;e002;117;322∇ · ðσðxÞ∇uðkÞðxÞÞ ¼ 0; x ∈ Ω (2)

and the boundary conditions of the complete electrode model (CEM)21,22 for k ¼ 1; : : : ; P and
l ¼ 1; : : : ; L

EQ-TARGET;temp:intralink-;e003;117;274uðkÞðxÞ þ zlσðxÞ
∂uðkÞðxÞ

∂n
¼ UðkÞ

l ; x ∈ el; (3)

EQ-TARGET;temp:intralink-;e004;117;226

Z
el

σðxÞ ∂u
ðkÞðxÞ
∂n

dS ¼ IðkÞl ; (4)

EQ-TARGET;temp:intralink-;e005;117;192σðxÞ ∂u
ðkÞðxÞ
∂n

¼ 0; x ∈ ∂Ω \
[L
l¼1

el; (5)

where zl is the contact impedance between the electrode el and the body Ω, n denotes the out-
ward unit normal vector on the boundary ∂Ω, and the isotropic conductivity distribution σ is
assumed to belong to L∞þ ðΩÞ ≔ fς ∈ L∞ðΩÞjess inf ς > 0g. The existence and uniqueness of
the solution ðu;UÞ ∈ H1ðΩÞ � RL∕R of the model [Eqs. (1)–(5)] were proven and its variational
form derived by Somersalo et al.22

In this paper, for the imaging algorithms, the numerical solution of the model [Eqs. (1)–(5)]
is based on the finite-element method (FEM), for details of the implementation see Vauhkonen
et al.23 and Kaipio et al.24 In the following, we denote the FEM-based solution for a single current
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pattern IðkÞ ∈ RL by σ ↦ Uðσ; IðkÞÞ ∈ RL where we consider a discretized version of σ, such that
σ ¼ P

N
j¼1 σjφj, where σj ∈ Rþ are the nodal coefficients, j ¼ 1; : : : ; N, and φj ∈ H1ðΩÞ,

j ¼ 1; : : : ; N, are the piecewise linear basis functions corresponding to an FE mesh of Ω.
Similarly for other variables, we use identical notation for continuous and discretized forms,
assuming the correct interpretation is clear from the context.

The measurement noise e ∈ RP·L is modeled as additive noise, leading to the measurement
model

EQ-TARGET;temp:intralink-;e006;114;648V ¼ UðσÞ þ e; (6)

where V ∈ RP·L is the vector of the measured noisy voltages for all applied current patterns
and UðσÞ ¼ ðUðσ; Ið1ÞÞ; : : : ; Uðσ; IðPÞÞÞT ∈ RP·L.

2.2 Algorithms

In EIT stroke monitoring, the occurrence of a secondary hemorrhage during treatment of ische-
mic stroke or the growth of a hemorrhagic stroke is detected as a change in conductivity

EQ-TARGET;temp:intralink-;e007;114;538δσ ¼ σ2 − σ1 (7)

between two consecutive measurement times t1 and t2. Because the hemorrhage-related changes
are slow compared to the duration of a single EIT measurement set, it is reasonable to model the
measurements at t1 and t2 with the stationary model Eq. (6) as

EQ-TARGET;temp:intralink-;e008;114;479V1 ¼ Uðσ1Þ þ e1; V2 ¼ Uðσ2Þ þ e2: (8)

With this setup, we test the feasibility of EIT for monitoring and detection of ICH by
comparing the performance of three algorithms for obtaining δσ as follows.

(1) A total variation (TV) regularized absolute imaging algorithm that reconstructs σ1 and σ2
independently and obtains δσ by subtraction.

(2) A linear difference imaging algorithm (LD) that directly reconstructs δσ.
(3) A stroke-monitoring algorithm (MO) that reconstructs σ1 and δσ utilizing a novel

combination of nonlinear region-of-interest difference imaging,16 parallel level sets
regularization,17 and a prior-conditioned least squares algorithm for solution of the lagged
Gauss–Newton search direction in the minimization of the regularized nonlinear least
squares functional.18,19

2.2.1 Absolute imaging-based algorithm. In the TV regularized absolute imaging algo-
rithm, δσ is obtained by first solving two separate absolute imaging problems to obtain estimates
of σ1 and σ2 and then computing δσ ¼ σ2 − σ1. The absolute imaging problem is solved with one
of the most popular reconstruction methods, the generalized Tikhonov regularization:

EQ-TARGET;temp:intralink-;e009;114;266σ̂t ¼ arg min
σt>0

fkLeðV − UðσtÞÞk2 þ pσðσtÞg; (9)

where t ¼ 1;2, Le is a Cholesky factor of the noise precision matrix, i.e., LT
eLe ¼ Γ−1

e , and pσðσtÞ
is a regularization functional, which is in this algorithm chosen as smoothed TV regularization25

EQ-TARGET;temp:intralink-;e010;114;211pσðσtÞ ¼ TVðσtÞ ¼ α

Z
Ω
ðk∇σtk2 þ β2Þ1∕2dx; (10)

where α > 0 is the regularization weight coefficient, ∇σ is the gradient of the conductivity σ, and
β > 0 is a small smoothing parameter that ensures differentiability. The minimization problem
[Eq. (9)] is solved with a lagged Gauss–Newton method equipped with a line search algorithm

that also enforces the nonnegativity σ > 0. To obtain a starting point σð0Þt for the iteration, the best
fitting constant conductivity can be estimated by solving a nonlinear least squares fitting
problem.

Although the absolute imaging approach is generally very sensitive to geometric modeling
errors, it can be expected to be a feasible choice in the stroke monitoring setup, where the
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patient-specific head geometry is available from the patient CT taken for diagnosis of the stroke
and the geometry of the domain does not change during the monitoring.

2.2.2 Linear difference imaging algorithm. In linear difference imaging, see Barber
et al.26 and Bagshaw et al.,27 the aim is to reconstruct the change in conductivity between mea-
surements, V1 and V2. In the linear difference imaging algorithm of this paper, the measurement
models [Eq. (8)] are linearized at some conductivity σ0 using the first-order Taylor approximations

EQ-TARGET;temp:intralink-;e011;117;653V1 ≈ Uðσ0Þ þ Jðσ1 − σ0Þ þ e1; (11)

EQ-TARGET;temp:intralink-;e012;117;618V2 ≈ Uðσ0Þ þ Jðσ2 − σ0Þ þ e2; (12)

where the Jacobian matrix J is evaluated at σ0. A reasonable choice for the linearization point σ0
can be obtained by solving a nonlinear least squares fitting problem for the best fitting constant
conductivity using the measurement data V1. With the linearized models Eqs. (11) and (12), the
difference in measurements can be written as
EQ-TARGET;temp:intralink-;e013;117;564

δV ¼ V2 − V1 ¼ ðUðσ0Þ þ Jðσ2 − σ0Þ þ e2Þ
− ðUðσ0Þ þ Jðσ1 − σ0Þ þ e1Þ ¼ Jδσ þ δe; (13)

where δσ ¼ σ2 − σ1 and δe ¼ e2 − e1. The linear difference imaging problem is to reconstruct δσ
based on the difference data δV and the solution can be obtained in the form of the generalized
Tikhonov solution [Eq. (9)] as

EQ-TARGET;temp:intralink-;e014;117;486δ̂σ ¼ arg min
δσ

fkLδeðδV − JδσÞk2 þ pLDðδσÞg; (14)

where Lδe is the Cholesky factor of the noise precision matrix of δe so that LT
δeLδe ¼ Γ−1

δe ¼
ðΓe1 þ Γe2Þ−1. The linear regularization functional pLDðδσÞ is in this paper a smoothness
regularization implemented utilizing a distance-based correlation model, giving

EQ-TARGET;temp:intralink-;e015;117;417pLDðδσÞ ¼ kLpσk2; (15)

so that LT
pLp ¼ Γ−1

p where the covariance matrix Γp is constructed using distance-based
correlation:28

EQ-TARGET;temp:intralink-;e016;117;367Γpði; jÞ ¼ stdðσÞ2 exp

�
−
kxi − xjk2

2a2

�
; (16)

where i; j ¼ 1; : : : ; N, and the parameter a controls the correlation length and can be solved by
setting the distance kxi − xjk to a selected value d (e.g., half the radius of the target) and setting
Γpði; jÞ to the desired covariance for that distance (e.g., 1% of the variance).

One of the main reasons for the popularity of linear difference imaging is that in the differ-
ence measurements [Eq. (13)] usually at least part of the systematic modeling errors are cancelled
out, making the approach more tolerant to modeling errors compared to most absolute imaging-
based approaches. However, as the approach is based on a linear approximation of the nonlinear
problem, it can lead to suboptimal results if the change between the states is large or, as usually in
practice, the initial state is unknown, implying that σ0 ≠ σ1 and the linearization is carried out in
a nonoptimal point.

2.2.3 Stroke-monitoring algorithm. The stroke-monitoring algorithm has been con-
structed as a novel combination of the nonlinear region-of-interest difference imaging approach
by Liu et al.16 with the parallel level sets regularization approach by Kolehmainen et al.17 and
it utilizes a prior-conditioned least squares algorithm similar to Arridge et al.18 and Harhanen
et al.19 for computationally efficient solution of the lagged Gauss–Newton search direction in
the minimization of the regularized nonlinear least squares problem.

The nonlinear difference imaging approach has been shown to be tolerant to modeling errors
to at least the same extent as the linear difference imaging approach and it can produce quanti-
tatively more accurate reconstructions of the conductivity change.29,30 This results from solving
the full nonlinear EIT problem instead of the linearized one and from the parameterization of
the problem with respect the initial conductivity state and the conductivity change. With this
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parameterization, the effects of the modeling errors that are invariant between the measurements
V1 and V2 were found by Liu et al.30 to induce errors in the reconstruction of the initial state σ1,
leaving the reconstruction of the conductivity change unaffected. Furthermore, in nonlinear dif-
ference imaging, it is possible to employ an a priori information-based region of interest (ROI)
constraint for the conductivity change δσ so that

EQ-TARGET;temp:intralink-;e017;114;676suppðδσÞ ¼ ΩROI ⊆ Ω: (17)

In monitoring of ICH a natural, not too constrictive ROI is the brain volume. If no ROI is
desired, it is possible to use ΩROI ¼ Ω, but restricting the ROI to a smaller subdomain has been
shown to improve the reconstruction of δσ.16 Based on Eq. (17), the conductivity at the later
measurement time t2 is modeled as

EQ-TARGET;temp:intralink-;e018;114;604σ2 ¼ σ1 þ Kδσ; (18)

where K is an extension mapping that extends the conductivity change from the ROI to the whole
domain Ω, so that

EQ-TARGET;temp:intralink-;e019;114;557Kδσ ¼
�
δσ; x ∈ ΩROI

0; x ∈ Ω \ ΩROI:
(19)

For the simultaneous estimation of σ1 and δσ, the measurement data V1 and V2 are combined
into a single vector, leading to the measurement model

EQ-TARGET;temp:intralink-;e020;114;495

�
V1

V2

�
¼

�
Uðσ1Þ

Uðσ1 þ KδσÞ
�
þ
�
e1
e2

�
: (20)

This measurement model can be written as

EQ-TARGET;temp:intralink-;e021;114;445

~V ¼ ~Uð ~σÞ þ ~e; (21)

where

EQ-TARGET;temp:intralink-;e022;114;408Ṽ ¼
�
V1

V2

�
; Ũ ¼

�
Uðσ1Þ

Uðσ1 þ KδσÞ
�
; (22)

EQ-TARGET;temp:intralink-;e023;114;359σ̃ ¼
�
σ1
δσ

�
; ẽ ¼

�
e1
e2

�
; (23)

and being now in a form similar to the measurement model Eq. (6), the joint reconstruction of σ1
and δ can be defined in the form of the generalized Tikhonov regularization [Eq. (9)] as

EQ-TARGET;temp:intralink-;e024;114;315σ̃ ¼ arg min
σ̃
fkL̃eðṼ − Ũðσ̃ÞÞk2 þ pðσ̃Þg; (24)

where the diagonal blocks of ~Le contain the Cholesky factors of the noise precision matrices of
measurements V1 and V2, and the regularization functional

EQ-TARGET;temp:intralink-;e025;114;261pð ~σÞ ¼ pσ1ðσ1Þ þ pδσðδσÞ (25)

allows independent regularization models for δσ and σ1. The conductivity change caused by
stroke expansion is expected to be localized and regular, and thus we use the smoothed TV
regularization25

EQ-TARGET;temp:intralink-;e026;114;200pδσðδσÞ ¼ TVðδσÞ ¼ αδσ

Z
Ω
ðk∇δσk2 þ β2Þ1∕2dx; (26)

where αδσ > 0 is the regularization weight coefficient, ∇δσ is the gradient of the conductivity
change, and β > 0 is a small smoothing parameter that ensures differentiability. The initial con-
ductivity σ1 is expected to correlate well with the structure of the patient CT that is always taken
for diagnosis of the stroke at the time of patient admission to the hospital. This information can be
utilized using a parallel level sets-based, spatially and directionally weighted TV regularization
that promotes similar alignment of level sets in σ1 and the CT-based reference image,17 giving

EQ-TARGET;temp:intralink-;e027;114;93pσ1ðσ1Þ ¼ WTVðσ1Þ ¼ ασ1

Z
Ω
ðk∇σ1k2BðκÞ þ β2Þ1∕2dx; (27)
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where ασ1 > 0 is the regularization weight coefficient, κðxÞ is the reference image and the tensor
BðκÞ is chosen such that aligned edges (or level sets) in σ1ðxÞ and the reference image κðxÞ are
preferred. One possible choice for the weighting tensor is17

EQ-TARGET;temp:intralink-;e028;117;699BðκÞ ¼ I − ð1 − γðxÞÞν̂ðxÞν̂ðxÞT; (28)

where

EQ-TARGET;temp:intralink-;e029;117;664ν̂ðxÞ ¼
�
0; if k∇κðxÞk ¼ 0

∇κðxÞ∕k∇κðxÞk; otherwise
; (29)

and 0 ≤ γðxÞ ≤ 1 is an edge indicator function such that γðxÞ → 1 when k∇κðxÞk → 0. In this
paper, γðxÞ is chosen by thresholding the gradient of the reference image so that

EQ-TARGET;temp:intralink-;e030;117;603γðxÞ ¼
�
γ1; if k∇κðxÞk ≥ threshold

1; otherwise;
(30)

where γ1 ≪ 1.
The minimization problem [Eq. (24)] can be solved using a lagged Gauss–Newton method

with the positivity constraints σ1 > 0 and σ1 þ Kδσ > 0. However, solving of the Gauss–
Newton search direction is very memory intensive and slow given the large number of unknowns
and voltage measurements in the stroke-monitoring setup. In this paper, the search direction is
solved in a less memory-intensive way using a prior-conditioned LSQR (MLSQR) iteration.18

This iterative method significantly reduces the required number of iterations by limiting its
solution space based on the regularization used in the inverse problem. The formulation for
prior conditioning also produces an alternative way for obtaining the gradients and Hessians
of the regularization terms that are required for the lagged Gauss–Newton iteration (for more
details, see Arridge et al.18 and Harhanen et al.19).

To obtain a good initialization for the optimization of Eq. (24), we utilize an anatomically
guided initial estimate where the domain is divided to three subvolumes (scalp, skull, and brain)
based on the reference image κðxÞ and a three parameter nonlinear least squares estimation is
carried out to obtain an initial conductivity with a constant conductivity value for each of the
subvolumes.

3 Methods

3.1 Computational Head Model
The highly accurate head model used for simulations of the EIT measurements was published by
Paldanius et al.20 and is based on a model from the population head model repository.31 The
original head model consisted of surface mesh presentations of the scalp, skull, CSF, white
matter, gray matter, and cerebellum. For 3D meshing, these surface meshes were imported into
ScanIP Simpleware. 32 circular electrodes with a 10 mm diameter were assigned based on the
modified 10-5 EEG electrode placement system designed for EIT measurements [Fig. 1(a)] by
Goren et al.5 To simulate a hemorrhage growing over time, concentric spheres with diameters
from 10 to 30 mm in 5 mm increments were manually placed in the volume of interest in the brain
parenchyma. The 30 mm sphere has a volume of 14.14 ml, matching the 14 ml median size of
ICH.32 For the meshing, the target maximum error from the original surface mesh was set to
0.15 mm to ensure preservation of thin details, such as the layer of CSF around the brain.
The maximum element edge length on the electrodes was set to 1 mm to make the mesh denser
in the regions near the electrodes as is required for sufficient numerical accuracy in EIT sim-
ulations. These settings resulted in a 3D mesh of 2.5 million tetrahedral elements, which was then
exported to COMSOL for simulation of the measurement data.

Two locations of simulated hemorrhage were considered, one cortical hemorrhage close to
the surface of the brain and one deep in the basal ganglia region of the brain. This provided
varying level of challenge for the EIT algorithms, as the sensitivity of the EIT measurement
is lower when the perturbation is deeper in the brain parenchyma.20 The basal ganglia region
is also the most common location of ICH, as perforative small arteries are prone to rupture in
patients with high blood pressure. The chosen hemorrhage locations are shown in Figs. 1(b)
and 1(c).
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Model setup for the simulation was performed in COMSOL 5.6. The tissue layers were
assigned with corresponding dielectric material properties from Gabriel et al.33 (Table 1).
The properties did not include values for the scalp as it is composed of multiple different tissues.
Hence, values of muscle tissue which were within the range of values reported for the scalp in
other literature34 were used. The dielectric values for cortical bone were used for the skull as it
matches the recommended value for single-layer skull models.34 The material properties for
1 kHz frequency were used, as the measurements were simulated at that frequency.

As COMSOL does not natively support the CEM, the CEM implementation tailor-made
for COMSOL from Fouchard et al.35 was used. An iterative BiCGStab solver was selected for
solving the FEM system.

The growth of the hemorrhage was simulated by changing the material properties of the
concentric spheres representing the hemorrhage from white matter and gray matter to blood.
In the first simulation, all the spheres were assigned material properties of white matter for the
hemorrhage close to surface of the brain and gray matter for the hemorrhage deep in the basal
ganglia region to represent a healthy brain. In the following simulations, the spheres were

Fig. 1 (a) Electrode locations chosen from the 10-5 system as described by Ref. 5. (b) The
hemorrhage location close to the surface of the brain. (c) The hemorrhage location deep in the
basal ganglia region.

Table 1 Material properties used in the simulation at 1 kHz frequency.33

Tissue Conductivity (S/m) Permittivity (F/m)

Scalp 0.32 434,932

Skull 0.02 2702

CSF 2.00 109

White matter 0.06 69,810

Gray matter 0.10 164,062

Cerebellum 0.12 164,358

Blood 0.70 5259
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sequentially assigned material properties of blood with the hemorrhage finally being 30 mm in
diameter in the last simulation.

3.2 Simulated Measurement Setup
In the simulation, a total of 32 independent pairwise current injections at 1 kHz and 1 mA mag-
nitude were used. The injection pattern used was 1-13, 2-14,. . . , 32-12, where the first number is
the number of the current injecting electrode and the second number is the current sink electrode.
In this current injection pattern, there is sufficient distance between the current injecting and
current sink electrodes for some of the current to pass through the skull and the brain, instead
of using adjacent electrodes resulting in current being mainly shunted along the well conducting
scalp. For each injection, the noninjecting electrodes recorded the resulting potentials from the
scalp. The simulated measurement data were saved as differential potentials between electrodes
1-2, 2-3,. . . , 32-1 and exported in .csv format.

Noisy realizations of the simulated measurement data were obtained by adding Gaussian
zero mean random noise with a standard deviation of 1.84 × 10−5 V to the simulated noise-free
measurements. The standard deviation of the noise was 0.067% of the maximum amplitude of
the EIT data from a healthy brain and corresponds to the approximated relative noise level of
the prototype stroke measurement device from Toivanen et al.15

3.3 Computational Meshes and Regularization Parameters for the Imaging
Algorithms

All imaging algorithms used a MATLAB-based solver for the FEM model [Eq. (6)] where the
electric potential uðxÞ was approximated in a tetrahedral mesh of 116,235 nodes and 597,631
elements with refinement near the electrodes as is required for sufficient accuracy for the
numerical solving of the model [Eqs. (1)–(5)]. Such refinement is not needed for the discretiza-
tion of the conductivity and would unnecessarily increase the number of unknown conductivity
values. Thus the conductivity was approximated in a coarser and uniform tetrahedral mesh of
38,433 nodes and 207,453 elements, leading to N ¼ 38; 433 unknown conductivity values.
These meshes used for the imaging algorithms are shown in Fig. 2 and they have a considerably
smaller number of elements than the highly accurate, 2.5 million element mesh used in
COMSOL for measurement data simulation from the anatomically detailed head model.

The regularization parameters for each algorithm were tuned manually to give the best visual
quality of the reconstructions. For the TV regularized absolute imaging algorithm, the values
α ¼ 0.01 and β ¼ 0.001 were used in Eq. (10). For the linear difference imaging algorithm,
a standard deviation of conductivity stdðσÞ ¼ 2σ0 was used in Eq. (16) and the parameter a was
calculated by setting a covariance of 1% of the variance at a correlation distance d ¼ lΩ∕4, where
lΩ ¼ 20.4 cm is the length of the domain Ω from the back of the head to the forehead. For the
stroke-monitoring algorithm, the values αδσ ¼ 0.005 and β ¼ 0.001 were used in Eq. (26), the
values ασ1 ¼ 10−7 and β ¼ 0.001were used in Eq. (27), and cross sections of the reference image

Fig. 2 Computational meshes used for the imaging algorithms. The computational mesh for
(a) conductivity and (b) the electric potential with electrodes highlighted.

Toivanen et al.: Simulation-based feasibility study of monitoring of intracerebral. . .

Journal of Medical Imaging 014502-9 Jan∕Feb 2024 • Vol. 11(1)



κðxÞ, the indicator function γðxÞ and the region of interest are shown in Fig. 3. The reference
image was obtained by approximately mapping the true skull volume into the computational
mesh used for discretization of the conductivity, in a similar manner as a CT image could
be used in a clinical setup. The indicator function γðxÞ corresponds to the boundaries in the
reference image and the region of interest was chosen to approximately correspond to the brain
volume. This would be a safe choice also when monitoring for secondary hemorrhages, where
the hemorrhage can sometimes occur also outside of the brain volume weakened by the ischemic
stroke.

4 Results and Discussion
The simulated measurement data from all hemorrhage-growth and no-growth scenarios were
used to compute estimates of δσ with all three algorithms, TV, LD, and MO. These estimates
were computed for both hemorrhage locations, resulting in a total of 126 estimates of δσ. Results
for a single hemorrhage progression chain (growth from 15 to 20 to 25 to 30 mm hemorrhage
diameter, corresponding to volume increases of 2.42, 3.99, and 5.96 ml) and for a single
no-growth case (20 to 20 mm hemorrhage diameter, corresponding to a volume change of
0 ml) are shown in Fig. 4 for the hemorrhage close to the surface of the brain and in Fig. 5
for the hemorrhage deep in the basal ganglia region.

For the cortical hemorrhage close to the surface of the brain, the cross sections in Fig. 4(a)
show that all three algorithms are capable of indicating the largest and second largest volume
change (fourth and third rows of estimates), but the smallest volume change (second row of
estimates) is indicated only by the stroke-monitoring algorithm. Furthermore, an examination
of the transparent 3D plots in Fig. 4(b) reveals that the estimates of the second largest volume
change (third row of estimates) with the reference algorithms contain additional conductive
inclusions that could be misinterpreted as additional hemorrhages. Overall, the estimates
produced by the stroke-monitoring algorithm show a much more regular and better-localized
conductivity change compared to the estimates of the reference algorithms.

The more challenging hemorrhage location deep in the basal ganglia region causes
deterioration of estimate quality for all algorithms as is clearly visible in the cross sections
in Fig. 5(a). For the reference algorithms, even the cross sections that seem to indicate the
expansion somewhat correctly (second row of estimates), they show just one of many con-
ductive artefacts, as revealed by a closer examination of the transparent 3D plots in Fig. 5(b).
Also, the estimates from the stroke-monitoring algorithm are less regular and localized, and
now more of the estimates of the conductivity change contain negative values, both indicative
of less reliable results. Nevertheless, out of the three algorithms, the estimates of the
stroke-monitoring algorithm best indicate the expansion of the hemorrhage also in this more
challenging monitoring setup.

The results for all 126 estimation cases are shown as heat maps in Fig. 6. The first row shows
for reference the true volume changes and the second row shows the norms of the noise-free
difference data for the two hemorrhage locations. The third row shows the norms of the noisy
difference data that show the magnitude of the change in the noisy measurement data from
the hemorrhage growth, with the no-growth values showing only the level of the measurement
noise. For comparison of the estimates, the integrals IDi;Dj

¼ ∫ ΩðδσÞDi;Dj
dx were computed for

all inclusion diameters Di and Dj and then normalized for each algorithm and simulated

Fig. 3 (a) Cross sections of the reference image κðxÞ, (b) the indicator function γðxÞ, and (c) the
region of interest used for the stroke-monitoring algorithm.
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Fig. 4 Slices of the computational head model at selected measurement times t corresponding to
hemorrhage diameters ∅ and hemorrhage volumes V , and estimates of the conductivity change
δσ ¼ σiþ1 − σi between two consecutive measurement times t i and t iþ1 for the hemorrhage close
to the surface of the brain with the TV regularized absolute imaging algorithm (TV), the linear
difference imaging algorithm (LD), and the stroke-monitoring algorithm (MO). (a) Single cross
sections through the center of the simulated hemorrhage and (b) transparent 3D plots.
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Fig. 5 Slices of the computational head model at selected measurement times t corresponding to
hemorrhage diameters ∅ and hemorrhage volumes V , and estimates of the conductivity change
δσ ¼ σiþ1 − σi between two consecutive measurement times t i and t iþ1 for the hemorrhage deep in
the basal ganglia region with the TV regularized absolute imaging algorithm (TV), the linear differ-
ence imaging algorithm (LD), and the stroke-monitoring algorithm (MO). (a) Single cross sections
through the center of the simulated hemorrhage and (b) transparent 3D plots.
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hemorrhage location separately. These were used to compute the adjusted normalized integrals
shown in the heat maps

EQ-TARGET;temp:intralink-;e031;117;426QDi;Dj
¼ IDi;Dj

−maxðabsðIDk;Dk
ÞÞ; (31)

where IDk;Dk
are the normalized integrals of the no-growth scenarios, and the maximum of their

absolute values is here regarded as a rough approximation for the maximum deviation in IDi;Dj

caused by measurement noise. Removing IDk;Dk
adjusts the normalized integrals so that all result-

ing QDi;Dj
< 0 are expected to correspond to estimates that are comparable to those caused by

noise alone and are thus not expected to be useful. This is further highlighted by the chosen color
scheme where all QDi;Dj

< 0 are shown in white. In contrast, the closer the values are to 1, the
higher the expected detectability of hemorrhage growth is.

Overall, the heat maps of the stroke-monitoring algorithm have larger values than either of
the reference algorithms, indicating better detectability of hemorrhage growth. The difference is
clearest when comparing the second or the third columns in the heat maps. The values high-
lighted with black borders in the heat maps correspond to the estimates shown in Figs. 4 and
5. The highlighted norms of the noisy difference data show that for the hemorrhage close to the
surface of the brain the two larger conductivity changes (20 to 25 and 25 to 30 mm) are clearly
different from the no-growth cases, but the value corresponding to the smallest conductivity
change (15 to 20 mm) is already very close to the no-growth cases. This small conductivity
change was visible only in the estimate from the monitoring algorithm and this is at least partly
because the algorithm benefits from utilizing both measurements and their connection, unlike the
linear difference algorithm that uses difference data or the TV regularized absolute imaging algo-
rithm that treats the measurements as completely separate.

5 Conclusion
In this paper, we used simulated data from an anatomically detailed computational head model
to study the feasibility of EIT for continuous bedside monitoring of ICHs and detection of
secondary hemorrhages and got promising results using a tailor-made, patient-specific stroke-
monitoring algorithm. The monitoring algorithm was referenced against a TV-regularized
absolute imaging algorithm and a linear difference imaging algorithm, and it was shown that
the proposed stroke-monitoring algorithm is capable of indicating smaller changes in the

Fig. 6 Comparison of all 126 cases. Diameter 1 and 2 are the diameters of the simulated
hemorrhage at the time of the first and the second measurements, respectively. (a) First row: the
true volume changes in ml; second row: the norms of the noise-free difference data for the two
hemorrhage locations in mV; third row: norms of the noisy difference data in mV. (b) The adjusted
normalized integrals QDi ;Dj

for the TV regularized absolute imaging algorithm (TV), the linear
difference imaging algorithm (LD), and the stroke-monitoring algorithm (MO).
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simulated hemorrhages than either of the reference algorithms. In the simulation tests of this
paper, the smallest volume change in the simulated hemorrhage detected by the proposed
stroke-monitoring algorithm was 2.42 ml for the cortical hemorrhage close to the surface of the
brain and 3.99 ml for the hemorrhage deep in the basal ganglia region.

Further testing of the feasibility of EIT for monitoring of ICHs and detection of secondary
hemorrhages is envisioned to include more complex simulation studies, laboratory phantommea-
surements that build upon the ones presented by Toivanen et al.,15 live animal measurements, and
eventually measurements from human stroke patients. Future development presents a number of
challenges, including the uncertainty of the electrode locations, electrode impedance variations,
and effects of computational domain truncation. However, our results provide first simulation-
based proof of concept, and we believe that EIT-based bedside stroke monitoring becomes a
valuable tool in follow-up of ICH patients for an early warning of changes in the brain tissue
of acute stroke patients that would prompt an immediate need for control CT scanning. In the
most severe cases, this would lead to timely decision to advance to intensive care and to neuro-
surgical intervention.
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