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ABSTRACT. Purpose: Diffusion-weighted magnetic resonance imaging (DW-MRI) is a critical
imaging method for capturing and modeling tissue microarchitecture at a millimeter
scale. A common practice to model the measured DW-MRI signal is via fiber orien-
tation distribution function (fODF). This function is the essential first step for the
downstream tractography and connectivity analyses. With recent advantages in
data sharing, large-scale multisite DW-MRI datasets are being made available for
multisite studies. However, measurement variabilities (e.g., inter- and intrasite
variability, hardware performance, and sequence design) are inevitable during the
acquisition of DW-MRI. Most existing model-based methods [e.g., constrained
spherical deconvolution (CSD)] and learning-based methods (e.g., deep learning)
do not explicitly consider such variabilities in fODF modeling, which consequently
leads to inferior performance on multisite and/or longitudinal diffusion studies.

Approach: In this paper, we propose a data-driven deep CSD method to explicitly
constrain the scan–rescan variabilities for a more reproducible and robust estimation
of brain microstructure from repeated DW-MRI scans. Specifically, the proposed
method introduces a three-dimensional volumetric scanner-invariant regularization
scheme during the fODF estimation. We study the Human Connectome Project
(HCP) young adults test–retest group as well as the MASiVar dataset (with inter-
and intrasite scan/rescan data). The Baltimore Longitudinal Study of Aging dataset
is employed for external validation.

Results: From the experimental results, the proposed data-driven framework out-
performs the existing benchmarks in repeated fODF estimation. By introducing the
contrastive loss with scan/rescan data, the proposed method achieved a higher con-
sistency while maintaining higher angular correlation coefficients with the CSDmod-
eling. The proposed method is assessing the downstream connectivity analysis and
shows increased performance in distinguishing subjects with different biomarkers.

Conclusion: We propose a deep CSD method to explicitly reduce the scan–rescan
variabilities, so as to model a more reproducible and robust brain microstructure
from repeated DW-MRI scans. The plug-and-play design of the proposed approach
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is potentially applicable to a wider range of data harmonization problems in
neuroimaging.
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1 Introduction
Diffusion-weighted magnetic resonance imaging (DW-MRI) provides a noninvasive approach to
estimate the intravoxel tissue microarchitectures as well as the reconstruction of in vivo neural
pathways of the human brain.1 Reproducible fiber orientation distribution function (fODF) esti-
mation is essential for downstream tractography and connectivity analyses.2 Recent advances in
imaging technologies, such as high angular resolution diffusion imaging (HARDI),3 provide us
with a higher angular resolution for modeling intravoxel orientation uncertainty. In contrast,
diffusion tensor imaging,4 while useful, does not inherently provide this higher resolution due
to its limitations in representing multiple fiber orientations within a single voxel. These new
capabilities in imaging, particularly with HARDI, result in more precise depictions of white
matter microstructure. However, they also necessitate more sophisticated processing methods
due to the increased complexity of the data.

The first family of the ODF estimation methods is typically called “modelbased,” which
links underlying tissue microstructures with observed signals via sophisticated mathematical
modelings such as constrained spherical deconvolution (CSD),5,6 Q-ball,7 and persistent angular
structure.8 Among such approaches, CSD is one of the most broadly accepted for modeling
HARDI signals.9 However, CSD is plagued by limited reproducibility (Fig. 1). Several studies
have highlighted the biases, inaccuracies, as well as other limitations of HARDI methods in
characterizing tissue microstructure (e.g., parameter selection, noise sensitivity, and assump-
tions).9 Moreover, such methods exhibit high computational complexity and often require a high
number of acquisition points, which might not be available in clinical settings.10

To address such challenges, the second family of approaches—“data-driven” methods—is
attracting increasingly more interest. For example, machine learning (ML) and deep learning
(DL) techniques have demonstrated their remarkable abilities in neuroimaging.10,11 Such
approaches have been applied to the task of microstructure estimation, aiming to directly learn
the mapping between input DW-MRI scans and output fiber tractography. To maintain the neces-
sary characteristics and reproducibility for clinical translation, robust training is carried out on a
diverse and representative dataset in a data-driven method, ensuring the model can handle a variety
of patient demographics and scanner variability. The trained model is subsequently validated and
tested on independent datasets to evaluate performance and confirm its generalizability. The rep-
licability of the model is assessed, with a thorough evaluation of its consistency across different test
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Fig. 1 Overview of the proposed method. The CSD is affected by measurement factors of diffusion
weighted imaging (DWI) signals (e.g., hardware, reconstruction algorithms, and acquisition param-
eters). The right panel shows the intersite variability during modeling, even for the data that are
collected from the same patient.
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sets and scanners. By not assuming a specific diffusion model, data-driven algorithms can reduce
the dependence on data acquisition schemes and additionally require less user intervention.

However, measurement variabilities (e.g., inter- and intrasite variability, hardware perfor-
mance, and sequence design) are inevitable during the imaging process of DW-MRI (Fig. 1).
Moreover, most existing model- and learning-based methods do not explicitly consider such
variabilities in modeling, which consequently leads to inferior performance on multisite and/
or longitudinal diffusion studies.12 To alleviate such issues, Nath et al.13 presented a multilayer
perceptron (MLP)-based DL method for estimating discrete fODF from voxel-wise DW-MRI
signals. In this work, Nath et al.13 incorporate identical dual networks to minimize the influence
of scanner effects via scan–rescan data while learning the mapping between input DW-MRI
signals and fODFs. The novelty in this approach is that paired data are used to drive the training
of the network where it learns to ignore features of scanner noise and interscanner bias, which
would otherwise lead the network to differentiate between the data.

Assessing scan–rescan consistency in DW-MRI studies is a common metric for validating the
reproducibility of a proposed method because it directly tests the stability of the method under
realistic conditions. Variability between multiple scans of the same subject could arise from a num-
ber of sources such as slight differences in patient positioning, physiological changes in the patient,
or even minor fluctuations in scanner performance. A method that produces consistent results
across repeated scans is likely to be more reliable and robust, enhancing its potential for clinical
application. We followed this approach to ensure the modeling reproducibility in our study.

However, the three-dimensional (3D) context information was largely ignored in the “voxel-
based” MLP model (i.e., model each voxel independently without considering the nearby vox-
els). It might lead to inferior performance for the 3D DW-MRI signals. To the best of our knowl-
edge, this is the first data-driven approach to explicitly model the 3D patch-wise scan–rescan
reproducibility for fODF estimation.

In this paper, we propose a novel deep CSD method to explicitly reduce the scan–rescan
variabilities, so as to model a more reproducible and robust brain microstructure from repeated
DW-MRI scans. Different from the voxel-wise learning in Nath et al.,13 we introduce a new
volumetric patch-based modeling method for 3D DW-MRI signals. Briefly, the 3 × 3 × 3 3D
patches from spherical harmonics (SHs)-represented DW-MRI signals are employed for a single-
shell microstructure estimation. The deep convolutional neural network (CNN) is deployed as
the computational model in our approach to derive the coefficients.

Another innovation is that we add intrasubject data augmentation to alleviate the impacts of
a smaller number of diffusion directions on both reproducibility and the accuracy of metrics
derived from CSD. The scan/rescan data are employed to facilitate our new loss function in
reducing the intrasubject variability. The method has been trained, validated, and tested on both
the Human Connectome Project (HCP) young adults (HCP-ya) test–retest group14 and the
MASiVar dataset.15 To assess the model’s generalizability, we applied our model to the
Baltimore Longitudinal Study of Aging (BLSA) dataset as the external validation.16 With both
direct deployment and further finetuning, we witnessed an increasing consistency between intra-
subject scans. Additionally, the brain structural connectomes are computed from the deep CSD as
the downstream task for further model evaluation.

Our contribution is fivefold:

• We propose a novel deep CSD method to explicitly reduce the scan–rescan variabilities, to
model a more reproducible and robust brain microstructure from repeated DW-MRI scans.
To the best of our knowledge, this is the first data-driven approach to explicitly model the
3D patch-wise scan–rescan reproducibility for fODF estimation.

• Different from the previous voxel-wise learning studies, we introduce a new 3D volumetric
representation of DW-MRI signals for a single-shell microstructure estimation.

• We propose a new intrasubject augmentation strategy that increases model robustness
under the “fewer diffusion directions” scenarios.

• The ensuring of model reproducibility empowers better a predicative power in brain con-
nectome analysis.

• The proposed method is a “plug-and-play” design as a simple multilayer regression net-
work, which can be easily aggregated with downstream connectivity analysis.
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2 Related Work
Ensuring reproducibility has been an important research topic in MR imaging, specifically in
diffusion imaging.17,18 To control the site effect in multisite imaging data, several strategies have
been proposed. Such approaches can be summarized into two major categories: conventional
statistics-based method methods17,19–23 and more recent ML-based methods.24–26

2.1 Statistics-Based Methods
Conventional statistical methods are usually applied in a linear regression manner on univariate
metrics with sites indexed as a categorical covariate, such as the least squares-based general
linear model19 and Bayesian estimation-based ComBat.17,20 These methods have been utilized
in multisite imaging studies and have shown a powerful capacity for removing linear site effects
in brain metrics.21–23 However, noticeable limitations have been observed for this type of method.
First, the site effect is mathematically assumed to be linear, whereas the actual effect can be
fundamentally more complicated. Second, brain characteristics are considered independently
in these models, largely neglecting the spatial and topological relationships among brain regions.

2.1.1 ML-Based Approaches

Recently, proposed DL-based harmonization methods, including U-Net,24 cycle generative
adversarial network,27 or 3D CNN,28 allow for mapping the complex abstract representations
of the nonlinear spatial pattern of the site effects. These models have been primarily applied
to ensure reproducibility of diffusion images,29 structural images,25 and morphological measure-
ments,26 successfully eliminating the site effect with complex spatial or topological information.
The model training strategy of site pairing is a common approach for DL-based methods. Briefly,
the fusion of data from multiple sites from a single model greatly increases the generalizability of
DL models. Most methods are ensuring test–retest reliability on the signal level.

As for tractography, most DL-based methods are dealing with the modeling process.30–32 By
regarding different data as the gold standard, these approaches are chasing perfect fitting with
different ground truth (GT) data, but the feasibility/confidence of the GT remains risky. For in-
stance, Nath et al.13 used monkey histology data as GT for fiber orientation distributions (FODs).
Such data are hard to obtain for a large human cohort, risking the generalizability of the trained
model. Sedlar et al.33 regarded the human data from HCP as GT, which has over three shells with
b-values of 1000, 2000, and 3000 s∕mm2 (each with 90 gradient directions). However, such
acquisition settings are not common in clinical settings. Additionally, even the same subject
collected at two different settings may have some degrees apart. As a result, they might have
very similar diffusion signals but fundamentally different fODFs. In our study, we proposed a
robust fitting with GT while constraining the scan–rescan variabilities through modeling.

3 Method

3.1 Data Representation
SHs are functions defined on the sphere. A collection of SH can be used as a basis function to
represent and reconstruct any function on the surface of a unit sphere.34 All diffusion signals are
transformed to SH basis signal ODF as a unified input for DL models, using SHs with the “tour-
nier07” basis.35 For the SH coefficients cmk , k is the order, m is the degree. For a given value of k,
there are 2mþ 1 independent solutions of this form, one for each integerm with −k ≤ m ≤ k. In
practice, a maximum order L is used to truncate the SH series. By only taking into account even-
order SH functions, the above bases can be used to reconstruct symmetric spherical functions.

3.2 Architecture
Inspired by Nath et al.,13,32 we employ a 3D CNN with a residual block and utilize 3 × 3 × 3

cubic patches as inputs. The rationale is that 3D patches might provide more complete spatial
information for DL networks (Fig. 2) compared with modeling each individual voxel inde-
pendently. Eighth-order SH is used as data representation in our study. Briefly, the input size
of the network is 3 × 3 × 3 with 45 channels, whereas the outputs are 45 eighth-order SH
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coefficients. During training, the architecture takes three patches as input. The first patch
comes from one subject, where the network learns the direct mapping between DW-MRI sig-
nals and fODFs of the center voxel through a traditional loss (from the network output relative
to a “truth” fODF). The remaining two are paired patches extracted from scan/rescan DW-MRI
of another subject and the network learns to minimize the difference of the fODFs of the center
voxel through a reproducibility loss. The same network is used for all three patches. The total
loss is propagated back into the neural network to promote both estimation accuracy and repro-
ducibility. For validation of the proposed method, it is in terms of accuracy relative to withheld
voxels and reproducibility with paired voxels in scan–rescan imaging. The inclusion of scan/
rescan data during training ensures the network’s robustness to input variations. However, in
the inference stage, the model is designed to work with single patches, eliminating the need for
paired data. The training process equips the model for real-world scenarios without reliance on
a rescan image. The introduction of scan/rescan data is to make the network robust to variations
in the input data.

In this network, three subsequent convolutional layers serve as the critical components of
the CNN with 3D convolutional filters (conv1: 45 filters, 1 × 1 kernel size, padding ¼ 0; conv2:
45 filters, 3 × 3 kernel size, padding ¼ 1; and conv3: 45 filters, 3 × 3 kernel size, padding ¼ 0).
One residual block is included to allow for the direct transmission of information from input and
the third convolutional layer, thereby enabling the effective training of DL networks (shortcut
connection). The convolutional filters are then flattened and connected to two dense layers for
predicting fODF at the center voxel locations. All layers have rectified linear unit (ReLU) as the
activation function. To enhance model training efficiency and stability, we employ batch nor-
malization in our DL architecture to standardize the inputs to each layer of the network, reducing
internal covariate shifts.

3.3 Loss Function
We introduce a customized loss function, as shown in Eqs. (1)–(3). The first term is the mean
squared error (MSE) loss between the network’s FOD prediction and the GT with the hyper-
parameter “α.” N is the number of samples, m is the order of the SH basis, and cmk is the
SH coefficients. The second term is the MSE loss between a corresponding/paired of voxels
(u and v). The second term has an expectation to be 0 and the hyperparameter is “β.”
Specifically, if no scan/rescan data participate during training, “β” is set to 0
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Fig. 2 DL architecture. A 3D patch-wise CNN is proposed to fit the fODF from the SHs using
3 × 3 × 3 cubic DW-MRI signals. A contrastive loss is introduced to reduce the intrasubject
variability.
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3.4 Intrasubject Data Augmentation
To provide a robust microstructure estimation, we introduce intrasubject data augmentation dur-
ing our network training. By performing random diffusion directions dropout and feeding the
model with augmented data during training, the model learns to handle situations such as missing
or corrupt diffusion directions due to factors such as patient movement or hardware malfunction
and make accurate predictions even with incomplete data. Furthermore, this augmentation strat-
egy can improve the model’s generalizability by exposing it to a wider range of data scenarios,
thus enabling it to better handle the variability and complexity inherent in real-world diffusion
data. An additional b-vector check is performed to ensure that the rest of the directions are still
well distributed on a sphere. Thus, we have reconstruction results from different total numbers of
diffusion directions from the same DW-MRI signal. The CSD method is sensitive to the number
of diffusion directions and therefore the generated fODF are augmented. By applying this aug-
mentation, the diffusion signal ODF generated from fewer diffusion directions is labeled by the
CSD results with the full numbers of gradient directions during the training process.

4 Experiments
The experiments can be summarized as with/without scan/rescan data, and with/without
intrasubject augmentation on two DL models (voxel-wise MLP presented by Nath et al.13 and
ours in Fig. 2). We assessed the models, as well as benchmarks, using the overall mean angular
correlation coefficient (ACC) on white matter voxels between the prediction and the GT on
the HCP and MASiVar dataset. The BLSA dataset has been introduced to further test model
reproducibility.

We conducted studies to examine the robustness of the model with “fewer gradient direc-
tions.” The results are quantitatively evaluated with single-shell single-tissue CSD (ssst-CSD).
Full direction ssst-CSD is regarded as the silver standard.

Eventually, complex network measures of brain structural connectomes (modularity, average
betweenness centrality, characteristic path length, and global efficiency) are computed as an
example of the downstream task evaluation.36

4.1 Data and Data Process
For the HCP-ya dataset,14 45 subjects with the scan–rescan acquisition were used (a total of 90
images). A T1 volume of the same subject was used for white matter (WM) segmentation using
3D spatially localized atlas network tiles (SLANT).37 HCP was distortion corrected with topup
and eddy.38,39 The acquisitions at b-value of 1000 and 2000 s∕mm2 (each shell with 90 diffusion
directions) were extracted for the study. Thirty subjects were used as training data, 10 were used
for validation, and five were used for testing.

For the MASiVar dataset,15 five subjects were acquired on three different sites referred to as
“A,” “B,” and “C.” Structural T1 was acquired for all subjects at all sites. All in vivo acquisitions
were preprocessed with the PreQual pipeline40 and then registered pairwise per subject. The
acquisitions at b-value of 1000 and 2000 s∕mm2 (each shell with 96 diffusion directions) were
extracted for the study. Two subjects from sets “A” and “B” were used as paired training data.
One subject was used for validation, whereas two subjects were used for testing. Scans from site
“C” were only used for evaluation.

Twenty-four subjects with the scan–rescan acquisition from the BLSA16 were used as an
additional model evaluation cohort. The BLSA dataset was acquired at a b-value of 700 s∕mm2

using a Philips 3T scanner. The data were preprocessed with PreQual. Eighteen subjects
were used for training, two subjects were for validation, and four subjects were for testing.
Additionally, another cohort of 198 subjects with biological information [age, sex, and ε4 allele
of apolipoprotein E (APOE) states] was used for analyzing connectommes. Between them,
46 subjects were APOE positive while 152 subjects were APOE negative. They were prepro-
cessed with the same protocol.

4.2 Model-Based Methods
We processed all the data to generate fODF with ssst-CSD using the diffusion imaging in Python
(DIPY) library (version 1.50) with its default setting.34 Reconstructions from full diffusion
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direction DW-MRI were regarded as GT. Voxel-wise agreement (metrics; see Sec. 4.6) between
paired data was calculated as silver standard.

4.3 ML-Based Methods
HCP and MASiVar datasets were employed to evaluate the learning-based method. The image
data at a b-value of 2000 s∕mm2 were used. We use a voxel-wise neural network as our DL
baseline. The network consists of four fully connected layers. The number of neurons per layer
is 400, 45, 200, and 45. The input is the 1 × 45 vector of the SH basis signal ODF, and the output
is the 1 × 45 vector of the SH basis fODF. The architecture in Fig. 2 was used to evaluate the
proposed patch-wise DL experiment.

Furthermore, the generalizability of different approaches was assessed by a rigorous external
validation using BLSA dataset. The BLSA dataset was acquired at a b-value of 700 s∕mm2. We
used the image data at b-value of 1000 s∕mm2 from both HCP andMASiVar to train the DLmodel
using the same approaches in the previous experiments. Briefly, we trained the DL model with
only BLSA data as baseline performance. To further test our model capacity, we further assess the
scenarios of finetuning the last two linear layers, beyond applying our trained model on BLSA.
Thus, we have three general approaches to compare the performance. Moreover, with/without
scan/rescan data, and with/without intrasubject augmentation on two DL models (voxel-wise
MLP presented by Nath et al.13 and our model in Fig. 2) are included as additional evaluation.

4.4 Ablation Study
In the ablation study, we evaluated the intrasubject consistency on all white matter voxels with a
different number of diffusion directions. The DL model that had the best performance on the
validation set is chosen for comparison. Different reconstruction results from a different number
of diffusion directions were visualized as the qualitative results, whereas their agreements with
the silver standard were assessed as the quantitative results.

Moreover, we investigated the impact of patch size on the performance of the patch-based
method. We varied the patch size (3 × 3 × 3 and 5 × 5 × 5) and recorded the computational time
and assessed the accuracy and reproducibility of the estimation. The input size of the first dense
layer is adjusted due to the increased input size. The experiments were performed on a work-
station with CPU: Intel Xeon Gold 6230R, 64GB memory, and GPU: Nvidia RTX A6000.

Additionally, we evaluated the effectiveness of the random dropout of diffusion directions
using the MASiVar dataset. A subset of 45 diffusion directions from the same shell was first
determined. A number of 45 was the basic requirement for eighth-order SHs and then visualized.
Then the dropout (drops from 96 to the subset) was performed randomly 10 times. With both
results of CSD reconstruction and DL prediction on the DW-MRI signal, the ACC and the mean
diffusivity (MD) (zeroth-order SH of the fODF) were computed. The spheres in both single fiber
and crossing fiber areas were presented to assess the effectiveness of the intrasubject augmen-
tation by examining shapeshift.

4.5 Downstream Task Evaluation
To evaluate the performance on downstream tasks, we predicted APOE status using different
brain structure connectome maps via different fODF modeling methods. Complex network mea-
sures of brain structural connectomes (modularity, average betweenness centrality, characteristic
path length, and global efficiency) were computed from the results as the downstream task.36

During the process, fODFs were computed from both CSD and our DL networks. We used the
MRTrix (version 3.0.3) default probabilistic tracking algorithm of second-order integration over
FODs for tractography.41 We generated 10 million streamlines to build each tractogram, seeding,
and termination using the five-tissue-type mask. We allowed backtracking. After, we converted
the tractography to a connectome with the Desikan–Killany atlas42 with 84 cortical parcellations
from Freesurfer.43 Graph theory measures were computed with the Brain Connectivity Toolbox
(version 2019-03-03).36

Modularity was the degree to which the network may be subdivided into clearly delineated
and nonoverlapping groups.36 Betweenness centrality was the fraction of the shortest paths in the
network that contained a given node.36 Average betweenness centrality was the average fraction
of shortest paths that nodes in a network participate in Ref. 36. The characteristic path length was
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the average shortest path between nodes in millimeters. Global efficiency was the average inverse
shortest path length.36 Using the graph measures and biological information (age and sex) as
input, we used a three-layer MLP network to perform classification across different APOE
groups between CSD and the DL approaches.

We performed leave-one-out cross-validation as the evaluation strategy. Weighted cross-
entropy was applied as we had unbalanced groups. The cross-validation had been performed
20 times, and the 95% confidence interval of the metrics was evaluated to alleviate the effect of
random seeds.

4.6 Evaluation Metrics
To evaluate the prediction accuracy and responsibility of the proposed DL methods, we used the
ACC [Eq. (4)] to evaluate the similarity of the prediction when compared with the GT estimate of
CSD and consistency on scan/rescan images. ACC was a generalized measure for all fiber pop-
ulation scenarios. It assessed the correlation of all directions over a SH expansion. It is calculated
between fODF of two voxels (u and v), where ukm and vkm are the SH coefficients. In brief,
it provided an estimate of how closely a pair of fODFs was related on a scale of −1 to 1,
where 1 was the best measure. Here, “u” and “v” represented sets of SH coefficients
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To robustly validate the significance and consistency of model performances, a deeper stat-
istical assessment was necessary. For this purpose, we employed the Wilcoxon signed-rank test.
This nonparametric test was chosen to compare paired differences without making assumptions
about the normality of the distribution, making it ideal for our study. By using the Wilcoxon
signed-rank test, we aimed to understand whether the observed differences in our model’s pre-
dictions were statistically significant or could have potentially arisen by random chance.

For downstream task evaluation, we used the classical classification metrics (accuracy, pre-
cision, recall, and F1) to evaluate the biomarker prediction. Macro precision, recall, and F1 were
used in our study as we had unbalanced positive/negative APOE groups.

5 Results

5.1 DL Results
The results of the fODF estimation are presented in Table 1. The mean ACC over white matter
regions is shown in the table to evaluate the similarity of the prediction when compared with

Table 1 Performance of fODF prediction on HCP and MASiVar.

Model and method Scan/rescan
Intrasubject
augmentation

ACC, compare with
full direction CSD

Scan/rescan
consistency

CSD (silver standard) N/A N/A 1 0.826 Ref

Voxel-wise 0.942 0.830 ★

✓ 0.938 0.878 ★

✓ ✓ 0.939 0.882 ★

Patch-wise 0.949 0.834 ★

✓ 0.954 0.886 ★

✓ ✓ 0.953 0.891 ★

Note: Mean ACC is calculated over white matter region voxels between (1) prediction and GT signals, (2) pre-
diction of paired scan/rescan DWI signals are calculated. Bold values indicate the best performance in each
reported metric. In the statistical assessment, we compared our model’s fODF prediction with the reconstruc-
tion from the silver standard and the ACC of the scan–rescan test cohort in HCP and MASiVar as compared
with the silver standard. The results yielded a p-value of <0.001 (marked as ★).
*Mean ACC are calculated over white matter voxels.
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the truth estimate of CSD. This serves as the accuracy of prediction. The mean ACC over white
matter regions is calculated in the test cohort of scan/rescan imaging, shown as scan/rescan
consistency in the table. This serves as validation of reproducibility.

The implementation of the CNN network for 3D-patch inputs led to a superior SH coef-
ficients estimation by incorporating more information from neighboring voxels. Meanwhile,
by introducing the identity loss with scan/rescan data, the proposed method achieved a higher
consistency while maintaining higher ACCs with CSD.

5.2 Model Evaluation on Unseen Dataset
By applying our method on BLSA dataset, as shown in Table 2, it shows a great improvement in
scan/rescan consistency while applying our approaches and using BLSA as finetuning data as
compared with both the silver standard and the model trained directly on the BLSA dataset
(0.838 versus 0.834 versus 0.635). More importantly, by directly applying the model to unseen
data, we still show significant intrasubject consistency and maintain high agreement (0.836
versus 0.872) with the full direction CSD.

5.3 Ablation Study
In the ablation study on the impact of patch size (Table 3), we applied the model- and DL-based
methods to the test image and recorded the computational time required by each method. The
results indicated that our DL-based method is faster than the voxel-based method, demonstrating
the efficiency of the DL approach. The results also showed that while the estimation performance
(both accuracy and reproducibility) with 5 × 5 × 5 patches was slightly better than with 3 × 3 × 3

patches, the computational time increased remarkably. Given this trade-off between estimation
performance and computational efficiency, 3 × 3 × 3 patches were selected as the default setting
across studies to balance accuracy and computational time effectively.

In Table 4, we evaluate the intrasubject augmentation by comparing the intrasubject con-
sistency on all white matter voxels with different numbers of diffusion directions. The DL model
that has the best performance on the validation set is chosen for comparison. In Fig. 3, the right
side shows a qualitative result of the visualization of the estimated SH coefficients, and the left
side shows the comparison with full-direction CSD. By performing CSD, the test subjects with a

Table 2 Performance on BLSA dataset.

Model and
method

Training
data

Test
data

Scan/
rescan

Intrasubject
augmentation

ACC, compare
with full

direction CSD
Scan/rescan
consistency

CSD (silver
standard)

N/A BLSA N/A N/A 1 (upper bound) 0.635 Ref

Voxel-wise
DL (Nath
et al.13)

HCP and MASiVar BLSA 0.845 0.747 ★

HCP and MASiVar BLSA ✓ 0.832 0.813 ★

Patch-wise
DL

HCP and MASiVar BLSA 0.829 0.763 ★

HCP and MASiVar BLSA ✓ 0.834 0.812 ★

HCP and MASiVar BLSA ✓ ✓ 0.836 0.824 ★

BLSA BLSA ✓ 0.872 0.834 ★

HCP, MASiVar, and
BLSA (finetune)

BLSA ✓ 0.849 0.828 ★

HCP, MASiVar, and
BLSA (finetune)

BLSA ✓ ✓ 0.842 0.838 ★

Note: The performance of different methods on the BLSA dataset. Bold values indicate the best performance in
each reported metric. In the statistical assessment, we compared different model’s fODF prediction with the
reconstruction from the silver standard and the ACC of the scan–rescan test cohort in BLSA as compared with
the silver standard. The results yielded a p-value of <0.001 (marked as ★).
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Table 4 Performance in fewer diffusion direction situation.

Model and method Scan/rescan
Intrasubject
augmentation

Intrasubject
consistency

CSD N/A N/A 0.848 ± 0.189 Ref

Voxel-wise 0.838 ± 0.195 ★

✓ 0.849 ± 0.175 ★

✓ ✓ 0.879 ± 0.138 ★

Patch-wise 0.842 ± 0.185 ★

✓ 0.856 ± 0.173 ★

✓ ✓ 0.902 ± 0.128 ★

Note: Model/method degradation is evaluated by assessing the prediction consis-
tency with fewer diffusion direction signals. Bold values indicate the best perfor-
mance keeping intrasubject consistency. Wilcoxon signed-rank test is applied as
a statistical assessment. In the statistical assessment, we compared our model’s
fODF prediction of the scan–rescan test cohort in MASiVar as compared with the
silver standard. The results yielded a p-value of <0.001 (marked as ★).

Table 3 Ablation study on the impact of patch size.

Model and method
ACC, compare

with full direction CSD
Scan/rescan
consistency

Computational
time (s)

CSD (silver standard) 1 0.826 532.42

Voxel-wise 0.939 0.882 75.29

Patch-wise (3 × 3 × 3) 0.953 0.891 89.36

Patch-wise (5 × 5 × 5) 0.950 0.898 179.55

Note: All DL models are trained with scan/rescan data and the intrasubject augmentation strategy. For the
accuracy and reproducibility of fODF estimation, an average performance on the test cohort of HCP and
MASiVar is reported. For computational time, an average inference time on HCP subjects of size 145 × 174 ×
145 is reported.

Subject 1

Subject 2

CSD reconst with
full diffusion directions

58 gradient directions
compared with

96 diffusion directions

70 gradient directions
compared with

96 diffusion directions

CSD reconst with
fewer diffusion directions

DL prediction from
fewer diffusion directions

Fig. 3 Qualitative results of fODF modeling. Visualizations of fODF of the proposed DL method
and the results from CSD modeling on two testing subjects in MASiVar. We took the same patch
(matched with the same color of the border) from the results in the crossing fiber area. The same
voxel is matched with the same color of the circle.

Yao et al.: Robust fiber orientation distribution function estimation using deep. . .

Journal of Medical Imaging 014005-10 Jan∕Feb 2024 • Vol. 11(1)



mean of 72 diffusion directions can only maintain a mean ACC of 0.848 as compared with their
same acquisition with 96 directions. By adding the intrasubject augmentation during the training
process, both voxel-wise and patch-wise models have significant improvement, which shows
that DL reveals untapped information during the ODF estimation. Figure 4 shows the result of
(1) estimation on a signal with fewer diffusion directions using a patch-wise DL model with
scan/rescan data and intra-subject augmentation participated during training and (2) CSD recon-
struction result.

We are evaluating our DL model by testing its performance with degraded signals, which
involve artificially reducing input data quality (diffusion direction dropout). This assessment
allows us to understand the model’s robustness under less ideal conditions by comparing its
results with CSD. Figure 5 shows how different methods maintain consistency in their result
compared with silver standard and methods’ self-full direction-estimation when faced with
degraded input data.

Figures 6 and 7 provide an additional qualitative visualization of the robust DL fitting during
diffusion direction dropout. In Fig. 6, we plot the mean diffusivity and the ACC spatial map

CSD

DL

Mean ACC = 0.811 

Mean ACC = 0.877 

Mean ACC = 0.875 

Mean ACC = 0.921 
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Angular Correlation Coeifficients Angular Correlation Coeifficients

ACC spatial map ACC spatial map

Slice: 21/50 Slice: 26/50

Fig. 4 ACC histogram and ACC spatial map. This figure depicts the histogram of ACC between full
diffusion directions’ reconstruction and fewer directions’ reconstruction while using the proposed
DL method and the results from CSD modeling on the two testing subjects in MASiVar. The ACC
spatial maps are the comparison between (1) the fODFs of reconstruction from CSD with full dif-
fusion directions and (2) fewer diffusion directions’ CSD and DL estimator on two testing subjects.

Fig. 5 Quantitative result of performances of methods/modeling with diffusion direction dropout.
ACC is calculated at specific intervals—every five diffusion directions—such as at 45, 50, 55, and
so on, enabling us to evaluate how the consistency of the model’s/method’s output was preserved
despite the reduction in diffusion gradient directions. The dropout (drops from 96 to the subset of
45 directions) was performed randomly 10 times. The mean ACC and the std are calculated and
shown in the line chart. (a) The DL-based method maintains high consistency than the CSD recon-
struction when both are compared with the silver standard (full-direction CSD) during the diffusion
direction dropout. (b) A similar assessment, except comparing itself using the full-direction
modeling.
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where MD indicates the fitting of the zeroth-order coefficients (no. 1 in 45) and the ACC focuses
on the rest of the SH coefficients (nos. 2 to 45 in 45). In Fig. 7, we focus on two unique voxels
belonging to the single fiber population and crossing fiber population respectively, the result
shows that CSD reconstruction has an obvious shapeshift in the low-resolution scheme while
DL with the data augmentation strategies remains higher consistency, especially in the visuali-
zation of the crossing-fiber voxel.

5.4 Downstream Task Evaluation
The APOE states are predicted using different brain structure connectome maps. This task is
employed as a downstream task to evaluate the performance of different fODF modeling meth-
ods. Briefly, we calculated the accuracy, precision, recall, and F1 for each method via 20 boot-
straps. Then, the 95% confidence intervals (95% CIs) are calculated for all metrics to demonstrate
the variability. As shown in Table 5, all lower bounds of DL metrics are higher than the upper
bounds of the CSD method.

6 Discussion
Ensuring scan–rescan variability is of paramount importance in diffusion signal modeling,
particularly when employing a data-driven approach. Data-driven methods, which learn directly
from the data, inherently rely on the consistency and reliability of the input data to produce
accurate and robust models. As such, the issue of scan–rescan variability comes into sharp focus.
In the context of diffusion signal modeling, variations between repeated scans of the same subject
can introduce inconsistencies that could significantly affect the performance of the data-driven
models. This is because these models are sensitive to the statistical properties of the training data.
If the input data are inconsistent due to scan–rescan variability, the learned model may not
generalize well, leading to less accurate predictions. Thus, in our study, addressing scan–rescan
variability is not just a quality control issue, but a crucial factor that directly impacts the
reliability and clinical applicability of data-driven diffusion signal models. A consistent focus
on minimizing this variability can result in models that provide more accurate, reliable, and
clinically meaningful results.

In our study, we developed a data-driven fODF modeling algorithm to provide robust micro-
structure estimation for modeling tractography. The proposed method (1) learns the mapping

96 (full)      90 85  80 75 70 65 60 55  50

DL fi�ng result 

Num of diffusion direc�ons

MD

ACC
with full 
direc�on CSD

MD

ACC
with full 
direc�on CSD

Fig. 6 Qualitative visualization of the predicted coefficients in fewer diffusion directions scenario.
The mean diffusivity map (MD, zeroth-order of the SH coefficient) and ACC agreement spatial map
(even orders of the SH coefficient without zeroth-order, compared with the silver standard–full
direction CSD) of DL results of the two MASiVar test subjects. The dropout was performed from
96 to the subset of 45 directions while the visualization was shown at intervals of every five
diffusion directions.
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Table 5 Confidence interval on metrics of biomarker predictions.

Metrics DL

95% CI

CSD

95% CI

p-valueLower bound Upper bound Lower bound Upper bound

Accuracy 0.568 [0.560 0.577] 0.526 [0.517 0.535] <0.001

Precision 0.520 [0.513 0.528] 0.463 [0.456 0.472] <0.001

Recall 0.525 [0.515 0.534] 0.450 [0.438 0.461] <0.001

F1 0.511 [0.502 0.520] 0.441 [0.432 0.480] <0.001

Note: The mean and the range of the 95% CI for the DL metrics are reported. The p-values for accuracy,
precision, recall, and F1 score when comparing DL to CSD are <0.001, respectively. Indicating that the
differences in these metrics between the two methods are statistically significant.

Single fiber

Crossing fiber

CSD

CSD

Patch-wise DL  
(Yao et al. SPIE 2023)

voxel-wise DL
(Nath et al. 2019)

Num of direc�ons

Decreasing96 50

Patch- wise DL  
(Yao et al. SPIE 2023)

voxel-wise DL
(Nath et al. 2019)

Fig. 7 Qualitative results of synthetic spheres. Visualization of reconstruction from different
numbers of diffusion directions of voxel from single/crossing fiber population. The dropout was
performed from 96 to the subset of 45 directions while the visualization was shown at intervals of
every five diffusion directions. CSD reconstruction of a voxel in crossing fiber population has an
obvious shapeshift in the low-resolution scheme while DL with the data augmentation strategies
remains a robust estimation.
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from SH basis 3D DW-MRI signal to a fiber ODF, (2) improves consistency and alleviates the
effects that occur between different scanners with a new loss function, (3) increases model
robustness in the ‘fewer diffusion directions’ scenarios, and (4) empowers better a predicative
power in downstream tasks (e.g., APOE states estimation from connectomes).

The improvement from voxel-wise input to patch-wise input is based on the assumption that
the model is trained on a diverse patch selection, it sees a wide range of scenarios. And mean-
while, a DL model can capture the complex relationships as a deeper network is able to account
for the 3D context without being unduly influenced by neighboring voxels in some scenarios.
This is the advantage of data-driven method, we do not need to explicitly ensure that neighboring
voxels have similar distribution functions to central voxel. Regarding the result of CSD from
high-quality data as silver standard, the DL algorithm was designed to be robust to variations
and noise in the data. By introducing specific loss functions and regularization techniques,
the DL model can be better suited to handle variations in the testing data compared to the
CSD algorithm. Additionally, the reproducibility loss functions can guide the model to focus
on certain aspects (ensuring scan/rescan variability) of the data that might be overlooked by the
CSD algorithm.

However, there are still several limitations in our approaches. First, one key limitation of our
approaches is the cost of computing resources by performing patch-to-center predictions. We
need to generate 27 times storage for the 3 × 3 × 3 patches for one single DW-MRI. Second,
to provide more precise microstructure estimation, we need to target our model to multitissue
multishell CSD, which provides different fiber response functions to different tissues. It also
leads to a potential future question on how to encode the b-value information into SH repre-
sentation during the transform of multishell DWI and signal ODFS.

7 Conclusion
In this paper, we propose a deep CSD method to explicitly reduce the scan–rescan variabilities so
as to model a more reproducible and robust brain microstructure of repeated DW-MRI scans that
are acquired from the same patient. From the experimental results, the proposed data-driven
framework outperforms the existing benchmarks in fODF estimation. In general, our study is
a step toward the direct harmonization of the estimated microstructure (e.g., FOD) using DL
and a data-driven scheme when scan–rescan data are available for training. The proposed method
is potentially applicable to a wider range of data harmonization problems in neuroimaging.
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