
Hierarchical abstract semantic model
for image classification

Zhipeng Ye
Peng Liu
Wei Zhao
Xianglong Tang



Hierarchical abstract semantic model for image
classification

Zhipeng Ye, Peng Liu, Wei Zhao,* and Xianglong Tang
Harbin Institute of Technology, Pattern Recognition and Intelligent System Research Center, School of Computer Science and Technology,
92 West Dazhi Street, Harbin 150001, China

Abstract. Semantic gap limits the performance of bag-of-visual-words. To deal with this problem, a hierarchical
abstract semantics method that builds abstract semantic layers, generates semantic visual vocabularies, mea-
sures semantic gap, and constructs classifiers using the Adaboost strategy is proposed. First, abstract semantic
layers are proposed to narrow the semantic gap between visual features and their interpretation. Then semantic
visual words are extracted as features to train semantic classifiers. One popular form of measurement is used to
quantify the semantic gap. The Adaboost training strategy is used to combine weak classifiers into strong ones to
further improve performance. For a testing image, the category is estimated layer-by-layer. Corresponding
abstract hierarchical structures for popular datasets, including Caltech-101 and MSRC, are proposed for evalu-
ation. The experimental results show that the proposed method is capable of narrowing semantic gaps effec-
tively and performs better than other categorization methods. © 2015 SPIE and IS&T [DOI: 10.1117/1.JEI.24.5.053022]
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1 Introduction
Due to the explosive growth of digital techniques, especially
the proliferation of smart phones with high-quality image
sensors, visual datasets are created and stored as often as
text data. To store and retrieve visual information more
efficiently, it is necessary to develop automatic image anno-
tation and object categorization techniques. Automatic object
categorization is a developing field in computer vision. It is
also the precondition of scene interaction in artificial intelli-
gence and has become a goal of important value in image
collection. Studies in object classification have reached con-
siderable levels of performance. Among all the methods,
the bag-of-visual-words (BoVW) method1 is one of the
approaches most commonly used in image retrieval (IR) and
scenario classification, whose simplicity and effectiveness
have been tested throughout the years. However, the perfor-
mance of methods based on low-level features, such as
BoVW, is affected by the so-called semantic gap between
higher-level ordinary human concepts and their lower-level
image representations.2 Semantic compression has been pro-
posed to narrow the semantic gap and avoid a supersized vis-
ual word vocabulary.3–6 In addition, several hierarchy-based
studies have been performed.7–11 Hierarchy-based methods
tend to build up higher-level semantic vocabularies to narrow
the semantic gap. Li7 proposed a Bayesian hierarchical
model denoting a training set as codewords produced with
unsupervised learning. Bannour and Hudelot8,9 proposed a
hierarchy-based classifier training method by decomposing
the problem into several independent tasks to estimate the
semantic similarity between the concepts, by incorporating
visual, conceptual, and contextual factors information to pro-
vide a more expressive form of semantic measurement for
images. Li-Jia et al.10 proposed a method of automatically

determining semantic features of image hierarchy by incor-
porating both image and tag information. Katsurai et al.11

presented a cross-modal approach for extracting semantic
relationships between concepts that was suitable for concept
clustering and image annotation.

A hierarchical abstract semantics (HAS) model is pro-
posed for object categorization in this paper. The HAS
model is different from other hierarchical methods in three
ways that further improve the performance. The first is the
strategy by which semantic features are selected. Existing
methods select different parts of images separately, but HAS
treats semantic visual words from the whole image as one
semantic feature to establish a higher-quality visual vocabu-
lary. The proposed model also has a hierarchical structure
with an upper abstract semantic layer, additional middle
abstract semantic layer, and concrete layer to further narrow
the semantic gaps. Previous studies have ignored the middle
layer. Some previous works have also straightforwardly
trained classifiers, but here, Adaboost is used to iteratively
combine weak classifiers into strong ones to improve perfor-
mance. This method is tested on popular computer vision
datasets using corresponding hierarchical structures to quan-
tify semantic gap and categorization performance.

The rest of the paper is organized as follows: In Sec. 2,
relevant previous works are discussed. In Sec. 3, the HAS
method is discussed in detail. The experimental results are
presented in Sec. 4. Conclusions are presented in Sec. 5.

2 Related Work
The current work is related to two types of research, object
recognition and image annotation, and measurement of
semantic gaps. Relevant previous works are reviewed in
the following subsections.
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2.1 Object Recognition and Image Annotation
In the past decade, numerous studies have been carried out
on automatic object categorization as a part of IR. In general,
studies on IR can be divided into three types. The first
approach is the traditional text-based approach to annotation.
It uses human power to annotate images, and images are
retrieved by text.12 The second focuses on content-based IR.
The images are commonly retrieved using low-level features
such as color, shape, and texture.13–17 The third approach
is based on automatic image annotation techniques and
involves learning models trained by a large number of sam-
ple images and uses the models to label new images. The
field of automatic image annotation can be further divided
into three subcategories. The first is based upon global fea-
tures.18 Supervised classification techniques can be used to
solve the categorization tasks. The second uses regional fea-
tures that represent an image as a set of visual blobs,19,20 con-
verting the categorization task to a problem of learning
keywords from visual regions. It is reasonably common to
use bag-of-features1 (BoF) for annotation and categorization.
Many effective categorization methods are vocabulary
based.21–23 A BoF model is built to represent an image as a
histogram of local features. This is the basis of the BoVW. In
BoVW, a codebook is constructed by clustering all the local
features in the training data and an image is treated as a col-
lection of unordered “visual words,” which are obtained by
k-means clustering local features. Then the image is repre-
sented using BoF to train the classifier. Jiang et al.24 evalu-
ated various factors that affect the performance of BoF for
object categorization including selection of detector, kernel,
vocabulary size, and weighting scheme. However, there
are several drawbacks to BoVW, including the following:
(1) spatial relationships between image patches are ignored
during the construction of visual vocabulary;25 (2) the hard-
assignment strategy used by k-means does not necessarily
generate optimized visual vocabulary;26 and (3) semantic
concepts are ignored during the clustering process.27 These
shortcomings have a significant effect on performance. Many
studies have been carried out to solve these problems. Chai
et al.28 utilized foreground segmentation to improve classi-
fication performance on weakly annotated datasets. In order
to address the problem that the BoF model ignores spatial
information among local features, spatial pyramid matching
(SPM)29 was proposed to make use of the spatial information
for object and scene categorization. There are several ways to
generate highly descriptive visual vocabulary. Wang et al.30

presented a simple but effective coding scheme called local-
ity-constrained linear coding (LLC) in place of the vector
quantization coding in traditional SPM to improve the
categorization performance. van Gemert et al.31 stated that
one way to improve the system’s ability to describe visual
words is to introduce ambiguity into visual words. Semantic
layers were constructed to narrow semantic gaps to generate
better visual vocabulary.32 Semantic visual vocabulary is
established to increase its quality. Deng et al.33 proposed
a similarity-based learning approach, which was able to
exploit hierarchical relationships between semantic labels
at the training stage to improve the performance of IR.
Wu et al.34 developed a semantic-preserving bag-of-words
(SPBoW) scheme to produce optimized BoW models by
generating a semantic preserving codebook.

2.2 Semantic Gap Measurement
The semantic gap is commonly defined as the lack of coinci-
dence between the information extracted from the visual data
and its interpretation.35 Millard et al.36 presented a vector-
based model of the formality of semantics in text systems,
which represents the translation of semantics between the
system and humans. Each image is commonly considered
relevant to more than one semantic concept, so there are
also semantic gaps between each of the concepts. The purely
automatic image annotation techniques are still far from
satisfactory due to the well-known semantic gap. A few
research efforts have been made to determine how to quan-
titatively measure the semantic gaps of concepts. According
to the criterion that different concepts correspond to different
semantic gaps, Lu et al.37 proposed a method to quantita-
tively analyze semantic gaps and developed a framework
to identify high-level concepts with small semantic gaps
from a large-scale web image dataset. Due to the significance
of measuring semantic gaps, a few scientific studies on the
quantification of semantic concepts have been performed.
Zhuang38 proposed a measure for semantic gaps from the
perspective of information quality. The semantic gap was
treated as the cause of inefficacy of the transmission of infor-
mation through representation of an information system,
indicating the fact that the carrier of information was unable
to transmit the information in question. Tang et al.2 proposed
a semantic gap quantification method during the study of a
semantic-gap-oriented active learning method and incorpo-
rated the semantic gap measure into the sample selection
strategy by minimizing corresponding information. In this
paper, the quantification criterion proposed by Tang et al.,2

which is one of the feasible methods to quantify semantic
gap, is used to evaluate methods.

3 Hierarchical Abstract Semantics Method
Semantic hierarchies can improve the performance of image
annotation by supplying a hierarchical framework for image
classification and provide extra information in both learning
and representation.8 Three types of semantic hierarchies for
image annotation have recently been explored: (1) language-
based hierarchies based on textual information,32 (2) visual
hierarchies based on low-level image features,39 and
(3) semantic hierarchies based on both textual and visual fea-
tures.10 Here, the original BoVW is extended by introducing
the inferential process of categories using a technique of
abstraction to further narrow the semantic gap. The architec-
ture of the HAS model is described in Sec. 3.1. Then the
training method is described in Sec. 3.2.

3.1 Hierarchical Abstract Semantics Model
In this paper, a method of learning hierarchical semantic
classifiers is proposed. This method relies on the structure of
semantic hierarchies to train more accurate classifiers for
classification. It is divided into two parts: a bottom-up train-
ing step and a top-down categorizing step. To build semantic
hierarchies, there is a basic assumption that the objects in the
real world that fit into the same category share a limited
number of common attributes.40 Here, original categories
of each image dataset are called concrete categories (CCs).
An abstract category is made up of CCs that share common
features. This process is done manually, offline, and serves as
prior information. For example, the middle abstract category
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“bird” is made up of the concrete classes “sparrow,” “chicken,”
and so on, while “bird” is part of the upper abstract category
“animal.” The structure of the original BoVW and the pro-
posed HAS model is shown in Fig. 1. Unlike existing meth-
ods,8,33 the proposed method has several abstract layers
constructed using abstract semantics. The upper abstract
layer is used to determine the general category of an image
using an support vector machine (SVM)-based classifier
named U-SVM. SVM is chosen as a basic classifier, since
it is a classical and typical method in image classification
with better performances.41 Similarly, the middle abstract
layer generates a refined category using M-SVM. Both
layers can be extended flexibly according to the application.
The purpose of using both U-SVM and M-SVM is to gen-
erate abstract semantics from top to bottom. The degree of
abstraction increases from bottom to top. It increases the
system’s ability to describe the target and reduces the
differences among CCs, while common attributes between
each pair of CCs under the same abstract category are pre-
served. However, the number of categories, number of cor-
responding attributes, and quantity of information increase
as the degree of abstraction decreases from top to bottom.
For example, in the concrete layer, the category “chicken”
is different from the category “sparrow.” However, when
the abstract level increases, they are merged into the same
abstract category, “bird,” which describes both categories
by aggregating their common features such as feathers,
wings, and beaks. The abstract layer works like middleware
in semantics. It connects the real-world and image datasets.
Information can be transmitted through the abstract layer:
semantic visual words are transmitted bottom-up and the cat-
egory of an image is transmitted top-down. Concrete classes
under same abstract class share some common features and
are similar to those under different abstract classes. Because
of this, every concrete class under the same abstract class is
similar but distinguishable from its fellows, indicating that
the inner-class distance is small and the intraclass distance
is large. It facilitates classification.

Unlike original BoVW, which uses CC training and cat-
egorizing in a flat way shown in Fig. 1(a), an abstract level,
including one middle layer and one upper abstract layer is
introduced, as shown in Fig. 1(b). The purpose of introduc-
ing abstract layers to the HAS model is to narrow the seman-
tic gap. Both the middle and the upper sublayers of the
abstract layers are constructed using semantic-preserved vis-
ual words34 extracted from CC. As shown in the figure, HAS
is a superset of BoVW. If the abstract layers were omitted,
HAS would degrade into a standard BoVW.

3.2 Bottom-Up Semantic Classifier Learning
The training of HAS is a three-step, bottom-up process. First,
each concrete classifier BoVWj is trained using a visual
semantic attribute, which is composed of semantics’ visual
words generated through SPBoW.34 The input of BoVWj
from the concrete layer is the images collected from each
dataset. Then to train classifier M-SVMi of the middle
abstract semantic category (MASC), samples from every CC
of the MASC were randomly selected with equal probability
to make sure every category has a chance to be selected in
establishing the visual vocabulary, which improves the
ability of description. Then a semantic visual vocabulary
is generated from selected samples using SPBoW training
M-SVMi. U-SVM classifiers of an upper abstract semantic
category (UASC) are trained in the same way. Finally, the
Adaboost training strategy42 is used to combine weak clas-
sifiers into a strong one to complete the learning stage.

3.3 Top-Down Categorization
After the bottom-up training stage is completed, trained clas-
sifiers are ready for categorization. To determine the category
of an input image, UASC u is first generated by U-SVM.
Then corresponding MASC m is calculated by M-SVMs.
Finally, the CC c is decided upon. The categorizing process
can be universally described as

Fig. 1 Architecture of flat bag-of-visual-word (BoVW) and hierarchical abstract semantics (HAS) model:
(a) flat structure of BoVW, and (b) hierarchical structure of HAS.
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EQ-TARGET;temp:intralink-;e001;63;734

u ¼ argmin½DðFt; Fu
i Þ�

m ¼ argmin½DðFt; Fm
j Þ�

c ¼ argmin½DðFt; FkÞ�: (1)

Here, Fu
t and Fm

j are the visual features of the upper and
middle abstract layers, Fk is the visual feature of the concrete
layer, and D is the measurement provided by the classifier.

Since the decision processes are serial, if u is incorrect,
the rest of the decisions are meaningless. There are two strat-
egies to decrease the dependence of the lower layers on
decisions from the upper layers: (1) passing testing image I
through upper and middle abstract classifiers, the output of
each upper and middle classifier is Pu and Pm, respectively.
The middle category is decided by the value of the i’th upper
classifier pui and the j’th middle classifier pmj, which is
described as follows:

EQ-TARGET;temp:intralink-;e002;63;544Cmiddle ¼
XU
i¼1

XM
j¼1

argmaxðpui þ pmjÞ: (2)

Here, U and M are the numbers of upper and middle clas-
sifiers; (2) Adaboost training strategy is used to improve the
performance of every classifier from each layer. Traditional
BoVW is used to produce n outputs p1; p2; : : : ; pn, and n
depends on the number of categories under each classifier.
I is categorized according to the category classifier that
outputs the largest value:

EQ-TARGET;temp:intralink-;e003;63;420C ¼ argmax
t¼1;2;: : : ;n

ðptÞ: (3)

3.4 Proposed Algorithm
Unlike the original BoVW, the proposed model makes its
improvement from the perspective of abstraction by intro-
ducing abstract semantic layers to narrow semantic gaps.
Moreover, semantic visual vocabulary and Adaboost are uti-
lized as the training feature and strategy, respectively, to
improve the performance of classifiers. The preparing and
learning algorithms of HAS are, respectively, described in
Algorithms 1, 2, and 3, where k ¼ 1; : : : ; m, CCk is the
short for k’th CC, MACj is the abbreviation of the j’th
middle abstract category, UACi is short for the i’th upper
abstract category, SVVS stands for semantic visual vocabu-
lary set, and m is the number of CC under j’th MAC.

For the preparation of HAS, at first, samples are randomly
selected from each CC to generate the bottom semantic vis-
ual vocabulary. Then according to the hierarchical structure
mentioned above, images of all categories under the same
MASC are randomly selected to generate the visual vocabu-
lary for the MASC. To build the visual vocabulary of UASC,
samples are selected from all CCs under the same UASC. As
shown from this process, the visual vocabulary of UASC
covers more CCs than those of any MASC. Thus, the ability
of the system to express itself increases from bottom to top,
which is the same as the degree of abstraction. After the steps
of generating visual vocabularies, classifiers on every level
of the hierarchy are trained layer-by-layer with the strategy
of Adaboost from bottom to top. According to the previous
work,42 SVM classifiers trained by a few samples are con-
sidered weak classifiers. For this reason, before the training

Algorithm 1 The preparation stage of HAS.

Input: Training image set.

Output: Semantic visual vocabulary for each category.

1: For each CCk under MACj , generate SVVS, where vq and sq
are visual words and their corresponding semantic information;
c is the size of the codebook.

2: The SVVS of MACj under UACi is constructed by
Mj ¼

Sz
k¼1 Inh

j
k and M-A−i ¼

Sy
j¼1 Mj .

3: For each UACi , randomly select SVVS with equal probability
from each Inhjk , forming U-ABSi ¼

Sy
j¼1

Sz
k¼1 Inh

j
k . Let

U-A ¼ Sx
i¼1 U-ABSi .

4: Return U-A.

Algorithm 2 The training processes of HAS.

Input: Visual vocabulary of concrete layer Inhjk , middle abstract layer
M-Ai , and upper abstract layer U-A.

Output: Strong classifiers
SNi

j¼1 BoVWj for concrete layer,SNm
i¼1 M-SVMi for middle abstract layer, and U-SVM for upper

abstract layer.

1: For every MACj ADABOOST-TRAINðBoVWj ; Inh
j
k Þ.

2: For every UACi ADABOOST-TRAINðM-SVMi ;M-Ai Þ.

3: ADABOOST-TRAINðU-SVM;U-AÞ.

4:Return Trained classifiers for each layer, including
SNi

j¼1 BoVWj ,SNm
i¼1 M-SVMi , and U-SVM.

Algorithm 3 The processes of ADABOOST-TRAIN.

Input: Visual vocabulary set U-A ¼ ðx1; y1Þ; : : : ; ðxN ; yN Þ with labels
and the weights of training samples: w1

i ¼ 1∕N, i ¼ 1; : : : ; N;
the initial minimum error rate εmin.

Output: Strong classifiers for each category.

1: Train a linear SVM component classifier, ht , on the weighted
training set.

2: Calculate the training error of ht : εt ¼
PN

i¼1 w
t
i , y i ≠ ht ðxi Þ.

3: Update the weights of training samples:
wtþ1

i ¼ fwt
i exp½−αt y i ht ðx i Þ�g∕Ct .

4: Update the weights of component classifier
ht : αt ¼ ln½2ð1 − εt Þ�, Ct is a normalization constant,
and

PN
i¼1 w

tþ1
i ¼ 1.

5: If (εt > εmin) go to (1).

6: Return f ðxÞ ¼ sign½PT
t¼1 αt ht ðxÞ�.
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starts, the weak classifiers are initially trained with vocabu-
laries of different sizes, and the weights are adjusted accord-
ing to the corresponding error rates. Finally, to classify an
image, that image is passed through the classification frame-
work from top to bottom. The procedure outlined above and
the framework of the proposed HAS method are shown in
Fig. 2.

4 Experimental Results
Two popular CV datasets were used to evaluate the perfor-
mance of the proposed model on image categorization:
MSRC43 and Caltech-101.44 MSRC contains 23 object
classes with 591 images, which are labeled by pixel. The
size of each image is roughly 320 × 240 pixels. Two catego-
ries, “horse” and “mountain,” were removed from evaluation
due to their small number of positive samples, as suggested
in the description page of the dataset. Four abstract catego-
ries are constructed by selecting 14 CCs with sufficient
and unambiguous training and testing images. Caltech-101
contains 101 categories with 9197 images. The size of each
image is roughly 300 × 200 pixels. Outlines of each object

are carefully annotated. Most images contain only one
object, centered, which renders object recognition less diffi-
cult. Some of the samples are shown in Fig. 3. For MSRC, at
least 15 images for each abstract category are selected for
training. For Caltech-101, the strategy reported by Wang
et al.30 was used to train the classifier. The remaining images
in the datasets are used or testing.

4.1 Setup
The hierarchical structure of MSRC and Caltech-101 used in
this paper, which was inspired by the works of Bannour and
Hudelot8 and Li-Jia et al.,10 is shown in Fig. 4. The structures
of each dataset were organized and presented for the first time.
The proposed method is compared with BoVW,1 LLC,30 and
one-versus-opposite-nodes (OVON).8 Mean average precision
and area under curve were used to evaluate the experimental
results. Lowe’s scale-invariant feature transform (SIFT)
descriptor45 was used to detect keypoints. The sizes of visual
vocabularies are 1000 per dataset generated by a k-means
algorithm, which means that each image is represented by
a histogram of 1000 visual words and each bin in the histo-
gram corresponds to the number of occurrences of a visual
word in that image. The LIBLINEAR open source library was
chosen to implement linear SVM due to its excellent speed
and performance on large-scale datasets.46 The one-versus-all
training strategy was used to train classifiers. εmin was set to
be 0.3. To fairly reflect the difference between each method,
we use SIFTas an image descriptor instead of the histogram of
oriented gradients utilized in LLC.30

During the process of categorization, the performance of
actual CC was evaluated as follows:

EQ-TARGET;temp:intralink-;e004;326;211correct_rate ¼
P

N
j¼1 δðCj − CiÞ

N
× 100%: (4)

Here, N is the number of testing images, and

EQ-TARGET;temp:intralink-;e005;326;156δðCj − CiÞ ¼
�
1 Cj ¼ Ci

0 otherwise
: (5)

Semantic measurement2 is used to quantitatively reflect
semantic gaps of BoVW and HAS. Both UASC and MASC,
defined above, were used to fairly quantize the semantic gap
between different methods. For BoVW, the semantic gap is
quantified as follows:

CC CC CC CC CC CC CC CC CC CC CC CC

Fig. 2 The whole procedure and framework of the proposed HAS.

Fig. 3 Sample images and corresponding hierarchical structure of
Caltech-101 dataset.

Journal of Electronic Imaging 053022-5 Sep∕Oct 2015 • Vol. 24(5)

Ye et al.: Hierarchical abstract semantic model for image classification



EQ-TARGET;temp:intralink-;e006;63;734Im-SGðxiÞ ¼
1

k

X
xj∈NðxiÞ

dis-simðxi; xjÞ: (6)

Here, NðxiÞ represents the set of the k-nearest neighbors of
xi in the visual space. The semantic distance dis-simðxi; xjÞ
between xi and each of its neighbors xj is measured by the
cosine distance between the vectors of their tags. For HAS,
the semantic gap is quantified as follows:

EQ-TARGET;temp:intralink-;e007;63;639Im-SGðxiÞ ¼ M
I Im-SGðxiÞ þ U

MIm-SGðxiÞ: (7)

Here, MI Im-SGðxiÞ stands for the image semantic gap between
the concrete layer and MASC, and U

MIm-SGðxiÞ stands for
the image semantic gap between MASC and UASC. HAS
was prepared as described in Sec. 3.4, which means image
semantic gaps were calculated as soon as the training data
were ready. The experiments were performed on a worksta-
tion with quad-core 2.13 GHz CPU and 12 GB memory.

4.2 Results and Analysis
The results of these experiments are presented in this sub-
section, which is divided into two parts, including both
horizontal and vertical comparisons on the proposed method,

Fig. 4 Details of the hierarchical structures for Caltech-101 and MSRC. Upper, middle abstract, and
concrete categories (CCs) are represented by dashed, dotted, and solid boxes, respectively. For MSRC,
the upper and middle abstracts are merged into single dashed boxes to make the chart clearer:
(a) the semantic hierarchical structure of MSRC, and (b) hierarchical structure of Caltech-101.

Table 1 Experimental results on performance and complexity tests
on different numbers of hierarchies.

Hierarchical
number of HAS MSRC Caltech-101

1 0.327P1 (−67.3%) 0.352P2 (−64.8%)

0.56T 1 (−44%) 0.431T 2 (−56.9%)

2 0.67P1 (−33%) 0.634P2 (−36.6%)

0.85T 1 (−15%) 0.697T 2 (−30.3%)

3 P1 P2

T 1 T 2

4 1.021P1 (þ2.1%) 1.01P2 (þ1%)

1.8T 1 (þ80%) 2.48T 2 (þ148%)

5 1.028P1 (þ2.8%) 1.018P2 (þ1.8%)

3.2T 1 (þ220%) 3.74T 2 (þ274%)
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and single-layer and multiple-layer image categorization
methods.

4.2.1 Evaluation of parameters

To determine the number of hierarchies for HAS, both aver-
age classification performance and runtime for a single
image here served as agents of comprehensive measurement.
The experimental results are given in Table 1. Here, we uti-
lize symbols P and T to represent the performance of clas-
sification and consumption of time, where P1 ¼ 0.813, T1 ¼
0.357 s, P2 ¼ 0.763, and T2 ¼ 0.452 s. These results show
that the performance of HAS is relevant to the number of
hierarchies. HAS with one or two hierarchies has a shorter
runtime for the whole algorithm than HAS with three.
However, at the cost of a significant drop in classification
performance, this indicates that adding more detailed seman-
tic layers to increase the performance of HAS is not effective,
since it takes much more time to run. This shows that HAS
with three layers achieves the best balance between perfor-
mance and runtime. This setting of the number of hierarchies
was addressed in the following experiments.

At the second part of self-evaluation, the HAS presented
here was compared with BoVW on both datasets using the
criterion of semantic gap quantification. For BoVW with flat
structure, the semantic gap was calculated directly. For HAS,
the total semantic gap was the sum of each semantic gap
between the upper, middle, and concrete concepts in each
layer. A comparison of BoVW with HAS regarding semantic
gap quantification is shown in Fig. 5. As shown, HAS was
more effective in narrowing the semantic gap between con-
cepts and visual data. For abstract categories with few CCs,
the difference between BoVW and HAS was not significant.
When the scale of the abstract category is small, the disturb-
ance between each CC is also relatively small, so the ability
of narrowing the semantic gap between both methods is
approximately coincident. But for larger abstract categories
such as “animal” of Caltech-101, substantial improvement is
observed. In general, HAS is more effective in narrowing the
semantic gap. This is because the introduction of upper and
middle abstract semantics reduces the inconsistency between
the distributions of low-level visual features and the high-
level semantic concepts. In the process of constructing visual
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Fig. 5 Semantic gap quantization result: (a) semantic gap quantization result of MSRC, and (b) semantic
gap quantization result of Caltech-101.
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data, the introduction of upper and middle abstract layers
ensures that the visual vocabularies are constructed from rel-
evant categories. The improvement is also present because
HAS classifiers trained with semantic visual vocabularies
generated by SPBoW34 are much more descriptive than the
ordinary visual vocabularies of BoVW.

4.2.2 Evaluation with different categorization
methods

The classification results of both MSRC and Caltech-101 are
shown in Fig. 6. The setting of the testing processes of
Caltech-101 is the same as those reported by Wang et al.30

The experimental results given in Figs. 6(a) and 6(b) show

that the performance of HAS is a substantial improvement
over that of other methods, including classical BoVW,
LLC, and hierarchical OVON methods on both datasets.
There are reasons why the proposed HAS performs better
than other methods. First, during construction of the visual
vocabulary, HAS does not exclude the ambiguity of visual
words and uses semantic visual words from the whole image
as one semantic feature to construct a high-quality visual
vocabulary during the establishment of abstract semantic
visual vocabularies. This construction strategy is beneficial
for improving the categorization performance.31 HAS selects
lower semantic visual words randomly with equal probabil-
ity, constructing upper semantics to make sure that each
term has a chance to be selected for training. The Adaboost
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Fig. 6 Categorization results for each dataset: (a) classification results on Caltech-101, (b) area under
curve of Caltech-101, (c) classification results on MSRC, (d) confusion table of abstract categories on
MSRC, and (e) confusion table of CCs on MSRC.
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training strategy was used to construct strong classifiers
to further improve the performance with respect to
classification.

The quality of classification on both datasets is shown in
Figs. 6(c)–6(e). For Caltech-101, area under curves are given
to show the quality of classification because this dataset is
much larger than MSRC, and it is difficult to list results for
each category, as in previous works.30 The confusion matrix
of MSRC on every abstract and in every CC is listed in
Figs. 6(d) and 6(e) to further show the details of the classi-
fication results. Values larger than 0.05 are listed to render
the table clear, which is consistent with results reported by
Zhou et al.47 According to the experimental results, the intro-
duction of multiple semantic layers can be used to distin-
guish one category from another. Most categorization errors
occur under the same abstract category, proving that the
semantic gap is efficiently arrowed by the introduction of
abstract layers, meeting the quantification result listed above.
The results of some popular and state-of-the-art categoriza-
tion methods on Caltech-101 are reported in Table 2. The
results show that the performance of the HAS presented here
is comparable with that of traditional and state-of-the-art
classification methods.

5 Conclusion
A multilayer abstract semantics inference model that is
highly abstract and easy to extend was introduced here to
deal with object categorization problems. Three techniques
were used here to improve the performance of the categori-
zation process: abstract layers, semantic vocabularies, and
the Adaboost training strategy, which form the whole frame-
work. The capabilities of this were demonstrated here on
popular computer vision datasets, and it showed substantial
improvements in semantic gap and categorization perfor-
mance over existing methods. Abstract hierarchical struc-
tures were used on existing datasets for construction of
semantic visual vocabularies. Future work will include build-
ing a generic abstract knowledge base to render the frame-
work dataset independent.
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