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Abstract. Diabetic retinopathy (DR) is one of the most complications of diabetes. It is a progressive disease
leading to significant vision loss in the patients. Abnormal capillary nonperfusion (CNP) regions are one of
the important characteristics of DR increasing with its progression. Therefore, automatic segmentation and
quantification of abnormal CNP regions can be helpful to monitor the patient’s treatment process. We propose
an automatic method for segmentation of abnormal CNP regions on the superficial and deep capillary plexuses
of optical coherence tomography angiography (OCTA) images using the marker-controlled watershed algorithm.
The proposed method has three main steps. In the first step, original images are enhanced using the vesselness
filter and then foreground and background marker images are computed. In the second step, abnormal CNP
region candidates are segmented using the marker-controlled watershed algorithm, and in the third step, the
candidates are modeled using an undirected weighted graph and finally, by applying merging and removing
procedures correct abnormal CNP regions are identified. The proposed method was evaluated on a dataset
with 36 normal and diabetic subjects using the ground truth obtained by two observers. The results show
the proposed method outperformed some of the state-of-the-art methods on the superficial and deep capillary
plexuses according to the most important metrics. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1
.JBO.23.9.096006]
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1 Introduction
Diabetic retinopathy (DR) is a progressive disease and one of the
leading causes of blindness in the world. However, significant
cases of vision loss can be prevented by the diagnosis of DR in
early stages.1–3 Based on the early treatment of DR study, DR is
classified into four stages, including mild nonproliferative
diabetic retinopathy (NPDR), moderate NPDR, severe NPDR,
and proliferative diabetic retinopathy (PDR).4 Depending on
the progression of the DR, various vascular abnormalities are
characterized.5,6 Capillary nonperfusion (CNP) regions or mac-
ular ischemia is one of the DR key features found in early stages
and increases with the severity of DR.7,8 Therefore, automatic
detection and quantification of macular ischemia as a valuable
biomarker for prediction and monitoring DR progression can be
helpful.9–11

Color fundus photography and fluorescein angiography (FA)
are widely used in retinal vessels analysis and lesion detection in
macular diseases.12–14 FA is a standard tool to evaluate retinal
vascular changes. Although this imaging method is still used
for grading DR, it is time consuming, invasive, and has some
side effects on patients, including vomiting, skin and eye
discoloration, urticaria, and, in rare cases, severe anaphylactic
reactions.15 Optical coherence tomography (OCT) is an impor-
tant noninvasive tool commonly used to visualize structural

changes of the retina caused by macular diseases, such as
cystoid edema, intraretinal and subretinal fluid.16–18 It allows
three-dimensional (3-D) cross-sectional imaging of the retina
at the micron-scale resolution.16 Due to the poor vasculature con-
trast in conventional OCT images, properly assessing vascular
changes in these images is not possible. Optical coherence
tomography angiography (OCTA) as an extension of the
OCT imaging modality provides 3-D imaging of the retinal
microvasculature.15,19 In comparison with the conventional angi-
ography imaging modality (FA), OCTA is fast, noninvasive
without any side effects, and can be repeated multiple times
on the same day.20,21 It also allows visualizing vascular abnor-
mality at specific depths, including superficial, deep, outer
retina, and choriocapillaris plexuses, which is not possible in
FA as a two-dimensional (2-D) modality. The ability of
OCTA imaging in the visualization of vascular abnormality
in different layers makes it a promising tool in detection
and monitoring vascular changes in retinal disease such as
DR.15,22–26 Macular ischemia or CNP regions as an early valu-
able biomarker is clear in OCTA superficial and deep plexus.9–11

There are a few attempts to automatic quantification of CNP
regions in literature. Hwang et al.11 proposed a threshold-based
approach to segment CNP regions. They investigated the total
area of macula ischemia in DR cases compared with a normal
group and showed that this area is significantly higher in DR
cases. This method was improved by Zhang et al.9 In their
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method, first, a projection resolved algorithm27 was used to
segment the OCTA images into three vascular plexuses, namely
superficial, intermediate, and deep. Then, segmentation of CNP
regions was done in three steps consisting of preprocessing,
vessel distance (VD) transform, and morphological operations.
In the preprocessing step, the contrast of the input image was
enhanced using vesselness filter.28 In the second step, using
local thresholding, the vessel network was extracted and then
VDmap was obtained by applying Euclidean distance transform
to the binary vessel network. Finally, by thresholding the VD
map and applying morphological operations, abnormal CNP
regions were extracted. They quantified the segmented regions
by computing the total area of them with and without the foveal
avascular zone (FAZ) area and showed that this total area can be
a valuable measure to detect mild NPDR group from the normal
group. These threshold-based methods cannot give an accurate
abnormal CNP regions map because the boundary of the regions
is limited to the range allowed by the threshold value.

A baseline and simple approach for the automatic segmen-
tation of CNP regions was used in Schottenhamml et al.10 study.
In this approach, first, the vessel map is obtained, and then each
nonvessel pixel in the logical vessel map is considered as a CNP
region. They used the same approach as Zhang et al.9 to segment
vessel network and extracted the vessel network by local thresh-
olding of the enhanced input image. Then, the CNP regions
were obtained by finding the connected components of the
inverted binary image. In this method, the means of 10 and
20 segmented regions with and without the FAZ were computed.
They showed that the mean of 10 largest regions can be a useful
measure for determining disease status in patients with diabetes
mellitus and DR. It should be mentioned that Schottenhamml
et al.10 focused on the extraction of new parameters for non-
perfusion quantification rather than the segmentation of the
whole abnormal CNP regions. However, roughly separating
the 10 largest regions as abnormal CNPs could lead to loss of
some abnormalities for a patient group and an increase in false
positives for normal subjects.

In the present paper, we tried to localize and segment abnor-
mal regions accurately and finally provide an accurate map of
them for further medical analyses and quantifications. Normally,
there is a regular distance between retinal vessel pixels. With the
loss of blood vessels due to the ocular diseases, this distance
increases and creates abnormal holes between the vessel struc-
tures. Therefore, in the medical field, abnormal CNP regions
are defined as holes with abnormal retinal VD. The previous
works9–11 have not been operated close to this concept of abnor-
mal CNP regions and have been focused more on the accurate

vessel network segmentation. In these works, by segmenting
vessel network as foreground objects, the input image is divided
into background and foreground and then the background is
considered to segment abnormal CNP regions. On the other
hand, the previous methods9–11 mostly tended to investigate
the impact of the ocular disease on changing CNP regions.
In these methods, accurate positioning of the CNP regions
has not been considered and only computing the total area of
them is important. Therefore, the method that they used for
segmentation of abnormal regions cannot provide an accurate
map of abnormal CNP region positions.

Since the functionality of the watershed algorithm is close to
the concept of CNP regions, we proposed a marker-controlled
watershed algorithm in a proper framework for the segmentation
of abnormalities. This fact was shown in Fig. 1. In the topo-
graphic representation of the grayscale image, where high inten-
sity shows peaks and hills and low intensity shows valleys,
the watershed algorithm finds the lines that surrounded each
catchment basins or isolated valleys (local minima). As shown
in Fig. 1(c), in the mesh plot of one of the abnormal CNP region
in the retinal VD image with negative values, CNP regions are
appeared as catchment basins or isolated valleys that can be
extracted using the watershed algorithm.

Considering the postprocessing step that consists of merging
and removing procedures, it shows that the proposed method
is more flexible and extensible compared to the previous
methods9–11 because it is possible to extend and improve the
proposed method by changing the similarity and removing mea-
sures based on the new finding in the medical investigation
of OCTA images. This aspect will be explained more in the
discussion section.

The results show that the proposed method can segment
abnormal CNP regions up to their boundary more accurately
than some other methods.

The rest of the paper has been organized as follows: the pro-
posed method is presented in Sec. 2. The evaluation of the pro-
posed method and discussion are discussed in Secs. 3 and 4,
respectively. And finally, the paper is concluded in Sec. 5.

2 Proposed Method
The watershed algorithm is widely used in the medical image
segmentation, such as lesion segmentation of breast in
mammogram29 and ultrasound images,30,31 intraretinal cysts
segmentation in OCT images,32 lymphoma segmentation in
computerized tomography (CT) images,33 and malignant lesion
segmentation in images acquired by magnetic resonance
imaging.34

Fig. 1 The mesh plot of an abnormal CNP region in negative VD image. (a) The VD image with negative
values, (b) one of the abnormal CNP region in (a), and (c) the mesh plot of (b).
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The watershed algorithm can be an effective segmentation
method if it is used with auxiliary processing before and
after segmentation. Oversegmentation is the main drawback of
the conventional watershed algorithm.35–37 In this study, we
managed this problem using preprocessing and postprocessing
steps before and after the segmentation.

As shown in Fig. 2, the proposed method has three main
steps: first, preprocessing to enhance the input image and
compute marker images; second, marker-controlled watershed
segmentation to segment the abnormal CNP region candidates;
and third, postprocessing to identify the correct abnormal
CNP regions. In the following, each step is described in
detail.

2.1 Preprocessing

The preprocessing step contains two main processes, namely,
first, increasing the contrast of the input image and second,
computing the foreground and background marker images.

2.1.1 Increasing the contrast of the input image

Noisy images have negative effects on the watershed algorithm
and cause oversegmentation. In this study, we used the Optovue
OCTA device for imaging. Using this device, enface images can
be extracted in color and grayscale modalities. In this step, first,
the red channel of the input image was extracted because, as is
shown in Fig. 3, this channel has the highest contrast between
the vessel pixels and background in comparison with the gray-
scale image, red and blue channels provided by the Optovue
system. Then, we applied two-scale (σ ¼ 1 and σ ¼ 2 pixels)
vessel enhancement filtering to remove background noise
from the red channel of the input image and enhance the contrast
between the vessel and background pixels.28 The vesselness

measure V0 obtained by applying the vesselness filter on the
red channel of a superficial image is shown in Fig. 4(b).
As it is obvious, the contrast between the flow pixels and back-
ground has been increased.

2.1.2 Computing the foreground and background marker
images

In the marker-controlled watershed algorithm, two logical
marker images, including foreground and background markers,
should be specified. The foreground marker images should con-
tain connected components of nonzero pixels within each of the
desired objects (abnormal CNP regions). Also, the background
marker should contain nonzero pixels that are not part of any
desired objects (vessel pixels). Therefore, the foreground marker
image ffgmðx; yÞ is defined as a binary image with the connected
components of pixels inside the CNP regions set to 1 and the
remained pixels set to 0. Also, the background marker image
fbgmðx; yÞ is a binary image with the pixels that are not part
of any CNP regions (vessel pixels) set to 1.

By applying Otsu38 threshold value T1 followed by closing
morphological operation with structuring element B (3 × 3 pixel
square) on V0; the background marker image fbgmðx; yÞ is
computed. That is,

EQ-TARGET;temp:intralink-;e001;326;171fbgmðx; yÞ ¼ εB½δBðVT1

0 Þ�; (1)

where ε and δ are morphological erosion and dilation operator,
respectively (closing is a dilation followed by an erosion). VT1

0 is
the result of applying Otsu threshold value T1 on V0. The back-
ground marker image is shown in Fig. 4(c). The shape and
size of the structuring element were chosen empirically.
Using a larger element eliminates the useful information from
the image, and the small holes may not be extracted.

Step1: Preprocessing

Step2: Marker-Controlled Watershed Segmentation Step3: Post-Processing

Input image Contrast
Enhancement

Red Channel 
Extraction

Background 
Marker 

Computation

Vessel Distance 
Computation

Foreground 
Marker 

Computation

Gradient 
Magnitude 

Image Extraction

Merging 
Abnormal CNP 

Candidates

Removing false 
positives

Final Result
Superimposing 

Markers in 
Gradient Image

Abnormal CNP 
Candidates 

Segmentation

Fig. 2 The block diagram of the proposed method.
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Then, the Euclidean distance function was used to compute
the foreground marker image because abnormal CNP regions
are defined as holes with abnormal VD. Therefore, to provide
the foreground marker image, first, the VD map fvdmðx; yÞ is
obtained by computing the distance of each pixel from the near-
est nonzero pixel of background marker image39 as follows:

EQ-TARGET;temp:intralink-;e002;326;126fvdmðx; yÞ ¼ minðx 0;y 0Þ¼fðx;yÞjfbgmðx;yÞ¼1gED½ðx; yÞ; ðx 0; y 0Þ�;
(2)

where ED is Euclidean distance function. Figure 4(d) shows
the VD map image computed by Eq. (2). Then, by applying

Fig. 3 A visual comparison among the contrast of different variants of the input image (the provided
grayscale image and three RGB channels). (a) RGB image, (b) the provided grayscale image,
(c) red channel, (d) green channel, and (e) blue channel.

Fig. 4 Preprocessing step. (a) Red channel in Fig. 3(c), (b) Enhanced image (vesselness measure),
(c) background marker image, (d) distance map image, and (e) foreground marker image.
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threshold value T2 to the VD image, the foreground marker
image is computed as follows:

EQ-TARGET;temp:intralink-;e003;63;559ffgmðx; yÞ ¼
�
1; fvdmðx; yÞ ≥ T2

0; fvdmðx; yÞ < T2
: (3)

Figure 4(e) shows the result of applying threshold value T2

on fvdm. The equation used for computing this threshold value
will be explained in Sec. 2.4. According to this equation
[Eq. (13)], the threshold value T2 is equal to 3 pixels. If the
threshold T2 is considered higher than 3 pixels, some abnormal
CNPs may not be nominated in the foreground image or may not
be delineated up to their true boundary in the final step. And if
the threshold value T2 is considered lower than 3 pixels, normal
regions may be nominated along with abnormalities.

2.2 Marker-Controlled Watershed Segmentation

The watershed algorithm by immersion was used to segment
abnormal CNP region candidates. In the following, we first
present a brief description of the watershed algorithm by immer-
sion and then we describe how it has been adjusted in the form
of the marker-controlled watershed to segment CNP regions up
to their true boundaries.

2.2.1 Watershed algorithm by immersion

In this algorithm, the input image is considered as a topographic
surface and the regional minimum points are found. Supposing
both minima want to be merged, a dam is created to avoid merg-
ing. By continuing this immersion process, we finally reach
a stage, where only the upper parts of the dams can be seen
on the surface. The boundaries created by the corresponding
dams are the dividing lines of the watersheds. Therefore,
these are continuous boundaries extracted by the watershed
algorithm.

2.2.2 Applying watershed algorithm to segment CNP
region candidates

Generally, watershed algorithm is applied to the gradient
image37 because in the gradient image, objects appear as dark
regions and their boundaries are located at pixels with high gra-
dient values. The Sobel operator is one of the well-known and
simple filters in terms of computation for obtaining gradient
magnitude of the image. Using this filter, the gradient magnitude
of the image fðx; yÞ is computed as follows:40

EQ-TARGET;temp:intralink-;e004;326;581fgðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Gx � fðx; yÞ�2 þ ½Gy � fðx; yÞ�2

q
; (4)

where Gx and Gy are Sobel edge masks in X and Y directions,
respectively. Figure 5(a) shows the gradient magnitude of
Fig. 4(b).

Due to the existence of numerous regional minima in the gra-
dient image, directly applying watershed algorithm to the gra-
dient image caused oversegmentation. Figure 5(b) shows the
result of applying the watershed algorithm to the gradient mag-
nitude image in Fig. 5(a). To overcome this intrinsic drawback
of the watershed algorithm, the marker-controlled watershed
algorithm was used. Using this technique, the number of
regional minima was controlled by defining marker image and
thus flooding only occurred in basins corresponding to each
marker.41 Therefore, in the marker-controlled watershed, first,
the marker points should be computed and then these markers
should be superimposed on the gradient image as global
minimums.

Based on the foreground marker image ffgmðx; yÞ and the
background marker image fbgmðx; yÞ provided by the prepro-
cessing step, the marker image fmðx; yÞ is defined as follows:

EQ-TARGET;temp:intralink-;e005;326;341fmðx; yÞ ¼ ffgmðx; yÞ ∪ fbgmðx; yÞ: (5)

Then, minima imposition morphological operation was used
to superimpose each marker on the gradient image.40 In this
operation, as it is defined by Eq. (6), first, the pointwise mini-
mum between the gradient image fg and the marker image fm is
computed (fg ∧ fm), then using morphological reconstruction
by erosion, the minimum superimposed gradient image
fmsgðx; yÞ is obtained [Fig. 5(c)]:

EQ-TARGET;temp:intralink-;e006;326;232fmsgðx; yÞ ¼ Rε
fg∧fm ½fmðx; yÞ�; (6)

where Rε is the morphological reconstruction by erosion of
fg ∧ fm from the marker image fm. In fact, the pointwise
minimum forces each region in the gradient image that is
corresponded with each white region in the marker image to
be a global minimum of the gradient image. Then, all gradient
image information except the masked regions (global mini-
mums) are recovered using the morphological reconstruction
by erosion.

Finally, CNP region candidates were obtained by applying
the watershed algorithm to the superimposed gradient image
fmsgðx; yÞ. Figure 5(d) shows the result of applying the water-
shed algorithm to fmsg.

Fig. 5 The output of applying the marker-controlled watershed to the gradient magnitude of Fig. 3(b).
(a) The gradient magnitude of Fig. 3(b), (b) applying the conventional watershed algorithm to (a),
(c) imposing marker image [Figs. 4(c) and 4(e)] in (a), and (c) the marker-controlled watershed result.
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2.3 Postprocessing

As shown in Fig. 5(d), some of the segmented CNP regions are
fragmented and do not show an accurate range of abnormal
region. In addition, some of the normal regions were segmented
along with abnormalities. Therefore, the postprocessing step
was considered to modify the marker-controlled watershed
segmentation output and obtain correct abnormal CNP region
with more accurate boundary. The postprocessing step was
performed by merging fragmented candidates based on the
proper similarity measure and then separating correct abnormal
CNP regions from modified candidates.

To merge the fragmented regions, the abnormal CNP region
candidates were modeled as an undirected weighted graph
G ¼ ðV; E; wÞ so that by defining V ¼ fRigni¼1, each vertex
represents a candidate region Ri and each edge ei ¼ ðRi; RjÞ
in E ¼ feigmi¼1 connects two neighboring candidates. n and m
are equal to the number of candidates and the number of neigh-
bors, respectively. By considering the weight of each edge equal
to the size of the common boundary between two neighboring
regions, the weighting function w∶E → N for each two neigh-
boring vertexes Ri and Rj is defined as follows:

EQ-TARGET;temp:intralink-;e007;63;291wðRi; RjÞ ¼ j½Ri − εBðRiÞ� ∩ ½Rj − εBðRjÞ�j; (7)

where ε is the morphological erosion and B (3 × 3 pixel square)
is the structuring element. The shape and size of the structuring
element were chosen empirically. Using a larger element leads
to a wider border extraction that is not suitable for our purpose.
The notation j j shows the number of pixels in the common

boundary computed by ½Ri − εBðRiÞ� ∩ ½Rj − εBðRjÞ�. Due to
the discontinuity of CNP candidates, the computed weighted
graph consists of a set of subgraphs G 0

i as follows:

EQ-TARGET;temp:intralink-;e008;326;496G ¼ ðV; E; wÞ

¼
[l
i¼1

fG 0
i ðV 0

i ; E
0
i ; w

0
i ÞjV 0

i ⊆ V; E 0
i ⊆ E;w 0

i ⊆ wg; (8)

where l is the number of discontinuities.
Therefore, the merging process was accomplished for each

subgraph G 0
i independently. Two neighboring regions Ri and

Rj are similar if their common boundary is larger than threshold
value T3. According to Sec. 2.4, this threshold value was com-
puted equal to 6 pixels. Thus, the largest edge in each subgraph
is extracted and the threshold condition is checked. If the con-
dition is satisfied, the nodes associated with this edge merge
together. It means that the same label is given to the correspond-
ing regions of those two nodes and the boundary between
them is removed. Then, the subgraphs are updated and rebuilt.
Considering Ri as a region, it should be removed and merged
with Rj, the components V 0, E 0, and w 0 of each subgraphG 0 are
updated as follows:

EQ-TARGET;temp:intralink-;e009;326;274V 0
tþ1 ¼ V 0

t − Ri; (9)

EQ-TARGET;temp:intralink-;e010;326;243

E 0
tþ1 ¼ E 0

t − fðRi; bÞjb ∈ V 0
t − Ri; ðRi; bÞ ∈ E 0

tg
þ fðRj; bÞjb ∈ V 0

t − fRi; Rjg; ðRi; bÞ ∈ E 0
tg; (10)

EQ-TARGET;temp:intralink-;e011;63;192

w 0
tþ1ðRj; bÞ ¼

8><
>:

w 0
t ðRj; bÞ þ w 0

t ðRi; bÞ if w 0
t ðRj; bÞ ∈ E 0

t and w 0
t ðRi; bÞ ∈ E 0

t

w 0
t ðRi; bÞ if w 0

t ðRj; bÞ ∈= E 0
t and w 0

t ðRi; bÞ ∈ E 0
t

w 0
t ðRj; bÞ if w 0

t ðRj; bÞ ∈ E 0
t and w 0

t ðRi; bÞ ∈= E 0
t

; (11)

where V 0
tþ1, E

0
tþ1, and w

0
tþ1 are updated sets of V

0
t , E 0

t , and w 0
t in

the step tþ 1 of merging procedure.
The merging process termination condition is defined as

reaching unified regions or missing thresholding condition.
Figures 6(a)–6(f) show the merging process on a sample of
fragmented CNP candidates. As it is seen, first two yellow and

dark green regions in Fig. 6(a), which have the largest common
boundary, are merged in Fig. 6(b). By this merging, the dark
green region is included in the yellow region so that the
boundary of the yellow region changed and the corresponding
weighted graph is updated. By continuing this procedure, the
unified yellow region in Fig. 6(f) is obtained. Figure 7(a)

Fig. 6 (a–f) Representation of the graph-based merging process on a sample of fragmented abnormal
CNP candidates.
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shows the result of applying the graph-based merging algorithm to
the marker-controlled watershed segmentation output in Fig. 5(d).

Finally, to remove normal regions that are wrongly extracted
along with the abnormalities, a circle-checking step with a circle
of radius R is considered. So, correct abnormal CNP regions are
obtained by removing any CNP candidates where it was not
possible to draw a circle of radius R inside them. A circle of
radius R can be inscribed in each abnormal region because
of using Euclidean distance function and the way of computing
VD (the distance of each pixel from the nearest nonzero pixel).
The radius R was considered as 4 pixels. It is computed by
Eq. (12) that will be described in Sec. 2.4.

Figures 7(b) and 7(c) show the final abnormal CNP regions
and their mapping on the color enhanced input image, respec-
tively. The color enhanced input image was obtained by
applying vesselness filter to each red, blue, and green channels
independently.

2.4 Determination of the Threshold Values

According to the analysis of VD, values in the OCTA images of
normal and diabetic subjects, the threshold values T2 in the pre-
processing step, T3 in the merging algorithm, and the radius R of
the circle in the final step are computed as follows:
EQ-TARGET;temp:intralink-;e012;63;307

R ¼ min

�
djd ∈ f1; : : : ;MVDg and

ðMPFDVD≥d −MPFNVD≥dÞ
MPFDVD≥d

> CL1

�
; (12)

EQ-TARGET;temp:intralink-;e013;63;230

T2 ¼ min

�
djd ∈ f1; : : : ;MVDg and

ðMPFDVD≥d −MPFNVD≥dÞ
MPFDVD≥d

> CL2

�
; (13)

EQ-TARGET;temp:intralink-;e014;63;158T3 ¼ 2T2; (14)

where MPFD and MPFN are the mean of the pixel frequency
with specific VD in each OCTA image of normal and diabetic
subjects, respectively. MVD is maximum vessel distance.
CL1 and CL2 are confidence levels equal to 0.99 and 0.90,
respectively. Table 1 shows the values of MPFD, MPFN, and
ðMPFDVD−MPFNVDÞ

MPFDVD
for VD ≥ d, d ∈ f1; : : : ;MVDg. As can be

seen, using the above equations, the threshold values T2, T3,
and the radius R are equal to 3, 6, and 4 pixels, respectively.

The radius R equal to 4 pixels (40 μm) is a discriminator
between normal and abnormal CNP regions. Due to the noise
and functionality of the watershed algorithm, some of the
abnormal CNP regions are not extracted up to their true
boundary. Therefore, using threshold value T2 less than R
(T2 ¼ 3 ≤ R), the regions with less VD value are extracted.
Finally, in the merging step, if these regions have a common
border size larger than or equal to T3 ¼ 2T2 ¼ 6 pixels with
abnormal CNP regions, they will be considered as a part of
abnormal regions and combined with them. Otherwise, they
are considered as a normal region and removed. In fact, T2
is an approximation of the CNP region radius and T3 is an
approximation of the CNP region diameter.

2.5 Dataset

A set of 36 images consisting of 18 pathologic and 18 normal
images were used. Pathologic and normal images were acquired
from 12 diabetic participants with DR at different stages and 18
healthy volunteers, respectively.

In the patients group, the mean age was 52.82� 11.31 years
and female/male ratio was 4/8. In the normal group, the mean
age was 39.07� 8.27 and female/male ratio was 9/9. The signal
strength index ranged from 46 to 69 and 62 to 83 in patient and
normal group, respectively.

Images were acquired using a commercial spectral-domain
OCT imaging device (RTVue-XR, Optovue, USA). This instru-
ment uses a light source centered on 840 nm with a full-width
half-maximum bandwidth of 45 nm and has an A-scan rate of
70 kHz. The tissue axial resolution of this device is 5 μm, and
the transverse is 15 μm.

Imaging was performed over 3 × 3 mm field-of-view cen-
tered on the fovea with a 1.6-mm depth to obtain OCTAvolumes
consisting of 304 × 304 × 512 voxels. Each data cube was
acquired in ∼2.9 s. Two repeated B-scans, each containing
304 A-scans, were captured at each fixed position before
proceeding to the next sampling location. A three dimensional
data cube was formed by orthogonal registration and merging
two consecutive scan volumes including one x-fast scan and
one y-fast scan.42

Angiography information was extracted using the split-
spectrum amplitude-decorrelation angiography algorithm by
computing the signal amplitude-decorrelation between two
consecutive B-scans of the same location.43

Fig. 7 Postprocessing step. (a) Merging fragmented abnormal CNP candidates of Fig. 5(d), (b) separat-
ing correct abnormal CNP regions from (a), and (c) mapping abnormal CNP regions on the color
enhanced input image.
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Using the built-in software, the OCTA volume is segmented
to different structural boundaries. Then, by computing maxi-
mum flow projection within the slabs defined by the segmented
boundaries, en-face projection angiograms, including superfi-
cial [between 3 μm beneath the internal limiting membrane
and 15 μm beneath the inner plexiform layer (IPL)], deep
(between 15 and 70 μm beneath the IPL), and choriocapillaris
(between 31 and 59 μm beneath the retinal pigment epithelium),
are constructed.43,44 Since DR influences superficial and deep
capillary plexuses, we segmented CNP regions in these two
angiograms.

In Optovue OCTA devices, en-face images can be directly
extracted in color and gray-level modalities. In this work, we
used the red channel of the color modality because it has higher
contrast compared to the corresponding grayscale image.

3 Evaluation
In this section, first, the evaluation process is explained, which
consists of ground truth description, evaluation metrics, and
the methods used for comparison. Then, the performance of
the proposed method versus the compared methods will be
investigated.

3.1 Evaluation Process

We evaluated our proposed method both qualitatively and quan-
titatively. The segmentation results were compared with manual
delineation ground truth provided by two trained ophthalmolo-
gists (observer 1 and observer 2). Using painting tool of the
Photoshop software, the experts manually drew the boundary

of each abnormal CNP regions on the color en-face angiogram.
Then, using a code we wrote in MATLAB, each color en-face
image with manual delineated boundary was converted to the
binary image (ground truth). The experts delineated only the
boundary of abnormal nonperfusion regions, not all nonperfu-
sion areas.

CNP regions were manually segmented twice by each
observer. The variability in the manual segmentations delineated
by different observers (interobserver agreement) and by the
same observer (intraobserver agreement) were evaluated using
Dice similarity coefficient (DSC), which is computed as
follows:45

EQ-TARGET;temp:intralink-;e015;326;464DSC ¼ 2 ×
jGT1 ∩ GT2j
jGT1j þ jGT2j

; (15)

where GT1 and GT2 are two ground truths provided by the same
or different observers. jGT1 ∩ GT2j shows the number of pixels
that are nonzero in both ground truths. jGTij shows the number
of nonzero pixels in the i’th ground truth.

In intraobserver variability evaluation, each observer seg-
mented the CNP regions manually in two different sessions.
For both observers, the time interval of segmentation between
these two sessions was more than 1 month in the superficial
plexuses and more than 3 weeks in the deep angiograms.

Table 2 shows themean� standard deviation of DSC for the
evaluation of intra- and interobserver agreement in the manual
segmentation of CNP regions.

In this table, Obs1i and Obs2i show the manual ground truth
provided by the first and second observer in the i’th session,

Table 1 Illustration of the parameter estimation in the dataset.

T 2 ¼ 3

R ¼ 4

VD ≥ 1 VD ≥ 2 VD ≥ 3 VD ≥ 4 VD ≥ 5 VD ≥ 6 VD ≥ 7 VD ≥ 10

MPFN 30030.22 8490.389 342.2778 21.11111 1.333333 0 0 0

MPFD 42039.39 19223.89 5660.167 2396.834 1117.556 443.0001 231.8334 40.78

ðMPFDVD−MPFNVDÞ
MPFDVD

0.2857 0.5583 0.9395 0.9912 0.9988 1 1 1

Table 2 Mean� standard deviation of DSC for intra- and interobserver variability evaluation in themanual segmentation of abnormal CNP regions
for three groups, including normal, diabetic, and all (normal + diabetic) subjects in the superficial and deep plexuses.

Method

Intraobserver variability Interobserver variability

Obs11 −Obs12 Obs21 −Obs22 Obs11&2 −Obs21&2

Superficial Normal 0.9532� 0.0173 0.9623� 0.0090 0.9547� 0.0153

Diabetic 0.9376� 0.0341 0.9295� 0.0236 0.8983� 0.0532

Normal + Diabetic 0.9454� 0.0278 0.9459� 0.0242 0.9265� 0.0480

Deep Normal 0.9687� 0.0182 0.9663� 0.0122 0.9644� 0.0242

Diabetic 0.9445� 0.0374 0.9136� 0.0685 0.8205� 0.0986

Normal + Diabetic 0.9566� 0.0315 0.9399� 0.0554 0.8925� 0.1016
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respectively. Obs11&2 and Obs21&2 are the unions of the both
ground truths provided by each of the first and second observers
at different sessions, respectively. As can be seen, there is a good
intra- and interobserver agreement in our study (a DSC value
larger than 0.7 indicates good agreement46).

We used precision and recall measures to evaluate our
proposed method quantitatively. These measures are defined as
follows:

EQ-TARGET;temp:intralink-;e016;63;664Precision ¼ TP

TPþ FP
; (16)

EQ-TARGET;temp:intralink-;e017;63;622Recall ¼ TP

TPþ FN
; (17)

where TP is the number of abnormal pixels, which were cor-
rectly detected; FP is the number of pixels, which were wrongly
detected as abnormal regions; and FN is the number of abnormal
regions pixels, which were not detected.

The correlation of segmentation was evaluated using Jaccard
index (J). Considering the segmented result (SR) obtained
by the algorithm and ground truth given with the dataset,
J is defined as follows:

EQ-TARGET;temp:intralink-;e018;63;497J ¼ jSR ∩ GTj
jSR ∪ GTj ; (18)

where jSR ∩ GTj shows the number of pixels that are nonzero in
both SR and GT. jSR ∪ GTj shows the number of nonzero pixels
in the union of SR and GT.

The result of the proposed method was compared with
the proposed method by Zhang et al.,9 which has recently
been published for automatic CNP region segmentation and the
baseline approach used in the Schottenhamml et al.10 method.
The comparison was done on our dataset because there is no
public available dataset in this field.

In the implementation of Zhang et al.9 method, we used the
preprocessing steps of the proposed method instead of a reflec-
tance-adjusted thresholding step presented in Ref. 9, because we
have not accessed the B-scans in the commercial version of
the Optovue device. Therefore, in the preprocessing step,
first, vesselness filter was applied to the input image and then
the binary vessel mask was obtained using Otsu thresholding.
The main and postprocessing steps were implemented based

on their published paper. In the main processing, first, a VD
map was acquired by applying Euclidean distance transform
to the binary vessel mask and then the CNP map was obtained
by applying the threshold value DT ¼ 4 to the VD map. In the
postprocessing step, the extracted CNP map was modified using
morphological operations. So that, first, the CNP regions were
eroded by a five-pixel wide square structuring element and
then regions smaller than eight pixel or regions with minor
axis length smaller than two pixels were eliminated. Finally,
remained regions were dilated by a seven-pixel wide square
structuring element. Because of this alternation in the prepro-
cessing step, in the following, this method is called modified
Zhang et al.9

Another simple and valuable approach, which was used in
the Schottenhamml et al.,10 is the baseline approach. As it
was described in Sec. 1, in the baseline approach, first the vessel
network is segmented, and then each nonvessel pixel in the
logical vessel map is considered as a CNP region.

To have a valid comparison with the baseline approach and
denoting the usefulness of watershed algorithm, we used the
vessel segmentation map provided by our proposed method
using Otsu thresholding rather than the vessel segmentation
method used in the Schottenhamml et al.10 method. We also
used the final circle-checking step to specify abnormal CNP
regions for the baseline method. Therefore, the baseline method
was implemented in four steps: (1) appling vesselness filter,
(2) providing the vessel binary mask using Otsu thresholding,
(3) finding the connected components of the inverted binary
mask, and (4) obtaining final CNP map by removing any CNP
candidates that it was not possible to draw a circle of radius
R ¼ 4 pixels inside them (circle checking).

3.2 Evaluation of Recall and Precision Rates for the
Proposed Method and the Compared Methods

Table 3 shows the results of precision and recall on all images
for our proposed method, the modified Zhang et al.9 and
the baseline methods by observer 1 (Obs11&2), observer 2
(Obs21&2), and the intersection of observer 1 and observer 2
(Obs11&2 ∩ Obs21&2) in each of the superficial and deep capil-
lary plexuses. As can be seen, in the superficial (deep) capillary
plexus, the proposed method has better performance compared
to other methods with recall rate 0.6864 (0.7068) for Obs11&2,
0.7108 (0.7196) for Obs21&2, and 0.7435 (0.8045) for

Table 3 The result of precision and recall on all images for modified Zhang et al.,9 baseline, and proposed method by Obs11&2, Obs21&2, and
the intersection of them in each of the superficial and deep plexuses.

Method

Obs11&2 Obs21&2 Obs11&2 ∩ Obs21&2

Recall Precision Recall Precision Recall Precision

Superficial Modified Zhang et al.9 0.2748 0.9498 0.2856 0.9475 0.3062 0.9445

Baseline method 0.9217 0.4225 0.9259 0.4075 0.9360 0.3830

Our proposed method 0.6864 0.8522 0.7108 0.8471 0.7435 0.8240

Deep Modified Zhang et al.9 0.3953 0.9111 0.3878 0.9079 0.4695 0.8721

Baseline method 0.9156 0.4121 0.9320 0.4261 0.9568 0.3470

Our proposed method 0.7086 0.7854 0.7196 0.8102 0.8045 0.7186
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Obs11&2 ∩ Obs21&2 while preserving the high precision rate
0.8522 (0.7854) for Obs11&2, 0.8471 (0.8102) for Obs21&2,
and 0.8240 (0.7186) for Obs11&2 ∩ Obs21&2.

Considering Obs11&2 ∩ Obs21&2 as a ground truth, in the
superficial (deep) plexus, the proposed method outperformed
the compared methods by improving recall rate around 44%
(34%) compared to the modified Zhang et al.9 and precision
rate around 44% (37%) compared to the baseline method.

Tables 4 and 5 show the precision and recall rates, respec-
tively, in normal and diabetic subjects for the proposed
method and the compared methods in each of the superficial
and deep plexuses, individually. As can be seen, in the normal
subjects, the proposed method outperforms both the modified
Zhang et al.9 and the baseline methods by decreasing the false
positive rate (high precision rate) while preserving recall
rate on a high value. In the superficial (deep) plexus of the
normal subjects, precision rate was improved around 49%
(21%) compared to the baseline method and recall rate was
improved around 30% (27%) compared to the modified
Zhang et al.9 In the superficial (deep) plexus of the diabetic
subjects, compared to the baseline method, precision rate
was improved around 42% (36%) and compared to the modi-
fied Zhang et al. method9 recall rate was improved around
47% (36%).

Although it can be observed in Table 5 for diabetic subjects
that the precision of the proposed method by the modified

Zhang et al.9 is higher (around 14% in the superficial and
18% in the deep plexus) compared to our proposed method,
the significant difference around 47% in recall rate shows the
drawback of this method in correctly segmenting the regions
up to the boundary. And also, it can be observed in the baseline
method that the recall rate is higher for both normal (around
10% in the superficial and 12% in the deep plexus) and diabetic
(around 22% in the superficial and 16% in the deep plexus) sub-
jects, although there is a significant difference in precision rate
for both normal and diabetic groups compared to the proposed
method.

Figures 8 and 9 show the segmentation results of the pro-
posed method and the compared methods using the ground
truth of Obs11&2 ∩ Obs21&2 on two diabetic (Fig. 8) and two
normal samples (Fig. 9) of the superficial and deep plexuses.
In these figures, the green and dark blue regions show the auto-
matic segmentation results and the ground truth, respectively.
The light blue regions show the overlapping of the automatic
segmentation and the ground truth.

Figures 8(i)–8(l) show the result of applying the baseline
method on two diabetic samples in the superficial and deep plex-
uses. As can be seen, this method has the highest false positive
compared to the other methods due to its simple assumption
that considered each nonvessel pixels as an abnormality.

The thresholding-based method proposed by Zhang et al.9

failed to extract most of the abnormal regions and correctly

Table 4 The result of precision and recall rates in normal subjects for modified Zhang et al.,9 baseline, and proposedmethod by Obs11&2, Obs21&2,
and the intersection of them in each of the superficial and deep plexuses.

Method

Observer1 Observer2 Observer1 ∩ Obsever2

Recall Precision Recall Precision Recall Precision

Superficial Modified Zhang et al.9 0.5133 0.9818 0.5525 0.9815 0.5565 0.9815

Baseline method 0.9211 0.5147 0.9592 0.4977 0.9643 0.4968

Our proposed method 0.7994 0.9955 0.8549 0.9886 0.8610 0.9885

Deep Modified Zhang et al.9 0.5456 0.9901 0.5443 0.9890 0.5625 0.9876

Baseline method 0.9381 0.7897 0.9338 0.7871 0.9540 0.7771

Our proposed method 0.8115 0.9937 0.8087 0.9916 0.8344 0.9886

Table 5 The result of precision and recall rates in diabetic subjects for modified Zhang et al.,9 baseline, and proposedmethod by Obs11&2, Obs21&2
and the intersection of them in each of the superficial and deep plexuses.

Method

Observer1 Observer2 Observer1 ∩ Obsever2

Recall Precision Recall Precision Recall Precision

Superficial Modified Zhang et al.9 0.2143 0.9313 0.2207 0.9280 0.2400 0.9232

Baseline method 0.9218 0.4042 0.9178 0.3895 0.9285 0.3604

Our proposed method 0.6577 0.8160 0.6757 0.8113 0.7125 0.7825

Deep Modified Zhang et al.9 0.3527 0.8802 0.3442 0.8763 0.4360 0.8271

Baseline method 0.9092 0.3615 0.9315 0.3777 0.9579 0.2895

Our proposed method 0.6795 0.7334 0.6948 0.7649 0.7937 0.6511
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segment them up to their boundary. However, it had the
least false positive regions compared to the other methods
[Figs. 8(m)–8(p)].

The proposed method could segment the abnormal CNP
regions up to their true boundary more accurately than the

compared methods, as shown in Figs. 8(q)–8(t). However,
our method segmented some false positive regions due to the
extraction of physiologic CNP regions along the large vessels,
low-quality OCTA images, and oversegmentation of some
abnormal CNP regions.

Fig. 8 A visual comparison between our proposedmethod and other methods on two samples of diabetic
images in each of the (a,b) superficial and (c,d) deep plexus. (a–d) Original diabetic images, (e–h) ground
truths, (i–l) baseline method, (m–p) modified Zhang et al.,9 and (q–t) proposed method.
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Although the FAZ is an anatomical part of the retina, in
pathological cases, destruction and enlargement of the FAZ
happen. Therefore, we did not remove the FAZ area from the
segmented abnormalities.

In the normal subjects (Fig. 9), the FAZ is the only avascular
region that should be segmented. As it is clear in Figs. 9(i)–9(l),
the baseline method segmented some physiologic regions in
addition to the FAZ due to its segmentation strategy, which

Fig. 9 A visual comparison between our proposed method and other methods on two samples of normal
images in each of the (a,b) superficial and (c,d) deep plexus. (a–d) Original diabetic images, (e–h) ground
truths, (i–l) baseline method, (m–p) modified Zhang et al.,9 and (q–t) proposed method.
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considered each nonvessel pixel as an abnormality. The method
proposed by Zhang et al.9 failed to segment the FAZ up to
its true boundary due to the use of thresholding segmentation
technique [Figs. 9(m)–9(p)].

According to Figs. 9(q)–9(t), our proposed method could
segment the FAZ more accurately than the compared methods,
although it has one false positive region in Fig. 9(l) because of
the low-quality of the input image.

3.3 Evaluation of the Segmentation Correlation for
the Proposed Method and the Compared
Methods

To evaluate segmentation correlation, Jaccard index between
the result of the proposed method and ground truths in each of
the superficial and deep capillary plexuses was computed.

Table 6 shows the result of Jaccard similarity metric in each
of the superficial and deep plexuses of normal, diabetic, and
all subjects, for the modified Zhang et al.,9 the baseline and
the proposed method by Obs11&2 ∩ Obs21&2 as a ground truth.
As can be seen, in comparison with the other methods, the pro-
posed method has higher Jaccard rate on all images with a mean
of 0.72 and maximum correlation up to 0.86 in the superficial

plexus and a mean of 0.70 with a maximum rate of 0.84 in
the deep plexus.

3.4 Evaluation of the Proposed Method and
the Compared Methods in Automatic
Quantification of Abnormal CNPs

As it was mentioned previously, automatic quantification of
abnormal CNP regions can be helpful in monitoring patient’s
treatment process. In Refs. 9 and 10, the total avascular area
(TAA) and the extrafoveal avascular area (EAA) in normal
and pathologic groups were computed to quantify abnormalities.
Since the output of the proposed method is a binary map of
abnormal CNP regions, TAA was computed by counting the
number of nonzero pixels in the binary map. And, same as
Zhang et al.,9 EAAwas considered as the avascular area outside
the 1-mm central circle.

Table 7 shows the TAA and the EAAvalues in the superficial
and deep plexus of the normal and diabetic subjects for the
proposed method, the compared methods, and ground truth
(Obs11&2 ∩ Obs21&2). As can be seen, in both capillary
plexuses, for all compared methods, the TAA and EAA are

Table 6 Mean� standard deviation of J for modified Zhang et al.,9 baseline, and proposed method by Obs11&2 ∩ Obs21&2 in the superficial and
deep plexus of three groups, including normal, diabetic, and all (normal + diabetic) subjects.

Method

Jaccard similarity metric

Normal Diabetic All subjects

Superficial Modified Zhang et al.9 0.5397� 0.0771 0.2399� 0.0815 0.3898� 0.1709

Baseline method 0.5190� 0.1712 0.3314� 0.0982 0.4252� 0.1672

Our proposed method 0.8503� 0.0421 0.5930� 0.0556 0.7217� 0.1392

Deep Modified Zhang et al.9 0.5526� 0.0571 0.3938� 0.0989 0.4732� 0.1132

Baseline method 0.7533� 0.0947 0.2874� 0.0552 0.5203� 0.2483

Our proposed method 0.8228� 0.0421 0.5690� 0.0693 0.6959� 0.1405

Table 7 Mean� standard deviation of TAA and EAA for modified Zhang et al.,9 baseline, ground truth (Obs11&2 ∩ Obs21&2), and proposed
method in the superficial and deep plexuses of the normal and diabetic subjects.

Method

TAA (mm2) EAA (mm2)

Normal Diabetic Normal Diabetic

Superficial Ground truth 0.2927� 0.0829 1.1081� 0.7120 0 0.7330� 0.6543

Modified Zhang et al.9 0.1660� 0.0573 0.2881� 0.1875 0.0030� 0.0052 0.1086� 0.1546

Baseline method 0.5683� 0.1810 2.8548� 0.8015 0.2195� 0.1610 2.3484� 0.7688

Our proposed method 0.2550� 0.0737 1.0090� 0.5122 0.0008� 0.0024 0.6701� 0.4654

Deep Ground truth 0.3134� 0.0814 0.8688� 0.4176 0 0.4338� 0.3302

Modified Zhang et al.9 0.1785� 0.0554 0.4580� 0.2743 0.0002� 0.0004 0.1590� 0.1550

Baseline method 0.3848� 0.0978 2.8751� 1.1635 0.0331� 0.0291 2.2671� 1.0828

Our proposed method 0.2645� 0.0727 1.0591� 0.6414 0 0.5896� 0.5102
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significantly larger in the diabetic group compared to the
normal group.

It can be observed from Table 7 that the proposed method
has the closest values of TAA and EAA to the ground truth in
each of the superficial and deep plexuses compared to the other
methods. In addition, the EAA values in normal images show
that the least physiologic regions (false positives) were extracted
by the proposed method.

The baseline method has the maximum of TAA and EAA in
each normal and diabetic group, which indicates a high false
positive rate in this method. And the modified Zhang et al.9

method has the least TAA and EAA values due to the high
false negative rate in this method.

The proposed method has been implemented in MATLAB
2016a and tested on a Laptop with Intel Core i7-4510U at
2.00 GHz and 8 GB RAM. The average processing time of
the algorithm for each image was ∼3.31 and 4.12 s in the super-
ficial and deep plexuses, respectively.

4 Discussion
In this section, the efficiency of the proposed method in two
fields, automatic segmentation of CNP regions and automatic
quantification of abnormalities, has been discussed.

4.1 Efficiency of the Proposed Method in Automatic
Segmentation of Abnormal CNP Regions

In comparison with some state-of-the-art methods, the method
proposed here is more flexible and extensible. The proposed
method is flexible and extensible because it is possible to extend
it based on the new findings in the medical studies of OCTA
images by changing the similarity and removing measures
in the merging and removing algorithms. The study of CNP
regions and their changes in the en-face angiograms of OCTA
images is an open medical research field. For example, it is
observed in the superficial and deep plexus of diabetic patients
that many of the microaneurysms and vessel irregularities
are happened in the vicinity of the abnormal CNP regions.19,47

Therefore, our result can be improved by extending the pro-
posed method based on these new features.

Another advantage of the proposed postprocessing step is
its ability to remove some artifacts created by the vesselness
filter in the preprocessing step. By using this filter, the speckle
structure is enhanced alongside improving the contrast of the
input image [Figs. 4(b) and 4(c)].

As it was shown in Figs. 7(a) and 7(b), these artifacts did not
affect the final result because by using merging and removing
algorithms in the postprocessing step, they are merged with the
nonperfusion regions or they are removed.

As it was shown in the evaluation results, the proposed
method has more performance compared to the modified Zhang
et al.,9 and the baseline approach used in the Schottenhamml
et al.10 In the proposed method by Zhang et al.,9 the conception
of the abnormal CNP regions is almost considered by computing
VD map, but finally, abnormal regions are extracted by
thresholding this map. In this method, in order to decrease
false positive in normal group, the considered threshold value
is relatively large that causes some abnormal CNP regions
not to be segmented or segmented incompletely. In the baseline
approach, after vessel network extraction, all that remains is
considered as abnormal CNP regions. This approach not only
cannot calculate a trustable amount of the area as a quantifica-
tion factor of the abnormal CNP regions but also cannot show

an accurate map of their position. The reason is that wherever
there is the smallest path between CNP regions through vessel
network discontinuity, this approach connects the regions and
represents them as a large CNP region; this path might occur
due to the vessel segmentation error or it was a normal discon-
tinuity in vessel network. Therefore, the efficiency of this
approach is highly dependent on the accuracy of the vessel seg-
mentation process while providing an accurate vessel segmen-
tation algorithm in 2-D projected OCTA images is difficult due
to the low quality of OCTA images and motion artifacts.

OCTA imaging devices are progressing toward improving
signal-to-noise ratio and enhancing image quality but the software
that is included in the commercial versions of this device is
not properly capable of eliminating noise and managing the dis-
tortions caused by the patient movement. Although this motion
artifact can be reduced by using the tracking module, imaging
with this mode takes longer time than patient tolerance.
Therefore, proposing a method that is less sensitive to low-quality
images is valuable. The core of the proposed method (the water-
shed algorithm) is sensitive to noise, but we could significantly
reduce this sensitivity by computing foreground and background
marker images in the preprocessing step and using merging and
removing procedures in the postprocessing step.

Overall, our proposed automatic abnormal CNP segmenta-
tion method has the following advantages:

(1) Being fast and completely automatic.

(2) Efficient mapping between the definition of abnormal
CNP regions and the concept of catchment basin in
the watershed algorithm.

(3) Extracting the regions with more accurate boundary.

(4) The possibility of taking advantage of expert knowl-
edge by considering postprocessing step.

4.2 Efficiency of the Proposed Method in Automatic
Quantification of Abnormal CNP Regions

Different parameters are used for quantifying capillary perfusion
alternation in the macular disease that can be categorized into
two groups. The first group is vessel density-based parameters
used in Refs. 11, 48, and 49. The second group is nonperfusion
area-based parameters used in Refs. 9, 10, 47, and 49. A study
has been recently published, which shows that the nonperfusion
area-based parameters may be more sensitive to microvascular
impairment compared to the vessel density-based parameters.49

All nonperfusion area-based parameters for clinical studies
can be computed using the abnormal CNP map provided by
our proposed method. In addition, in comparison with other
nonperfusion area-based methods, our proposed method has
the following advantages:

(1) Unlike Ref. 49, only the abnormal CNP regions are
extracted and the normal distance between vessels are
not considered.

(2) The proposed method is more robust to small errors
occurring in the vessel segmentation compared to the
proposed methods in Ref. 10. Because the proposed
method is based on the conception of abnormal CNP
regions and uses the merging and removing algo-
rithms to obtain final abnormal CNP regions.
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5 Conclusion and Future Work
In this paper, we proposed an automatic abnormal CNP region
segmentation method based on the marker-controlled watershed
algorithm. Our proposed method has three main steps. In the
first step, the input image was enhanced using vesselness filter
and then the foreground and background marker images were
computed. In the second step, the marker images were imposed
in the gradient magnitude of the preprocessed image and then
the CNP region candidates were obtained by applying the water-
shed algorithm to the imposed image. And finally, in the third
step, correct abnormal CNP regions were obtained by modeling
candidates as an undirected weighted graph and using merging
and removing procedures.

The proposed method was evaluated on the superficial and
deep plexuses of OCTA images dataset consisting of 18 normal
and 18 diabetic subjects acquired from spectral-domain OCTA
imaging. The results showed that our proposed method outper-
formed the state-of-the-art method with the recall rate of 0.74
and precision rate of 0.82 in the superficial plexus and the recall
rate of 0.80 and precision rate of 0.72 in the deep plexus.
Although the proposed method could segment the abnormal
CNP regions up to their boundary more accurately, the false
positive of the proposed method is considerable. It is expected
that using new features like the irregularity of the vessels around
regions or the presence or absence of microaneurysms around
them in the merging and removing step can reduce the false pos-
itive of the proposed method. We investigate it as a future work.
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