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Abstract

Purpose: Covariance between gray-matter measurements can reflect structural or functional
brain networks though it has also been shown to be influenced by confounding factors (e.g.,
age, head size, and scanner), which could lead to lower mapping precision (increased size
of associated clusters) and create distal false positives associations in mass-univariate vertexwise
analyses.

Approach: We evaluated this concern by performing state-of-the-art mass-univariate analyses
(general linear model, GLM) on traits simulated from real vertex-wise gray matter data (includ-
ing cortical and subcortical thickness and surface area). We contrasted the results with those from
linear mixed models (LMMs), which have been shown to overcome similar issues in omics
association studies.

Results: We showed that when performed on a large sample (N ¼ 8662, UK Biobank), GLMs
yielded greatly inflated false positive rate (cluster false discovery rate >0.6). We showed that
LMMs resulted in more parsimonious results: smaller clusters and reduced false positive rate but
at a cost of increased computation. Next, we performed mass-univariate association analyses on
five real UKB traits (age, sex, BMI, fluid intelligence, and smoking status) and LMM yielded
fewer and more localized associations. We identified 19 significant clusters displaying small
associations with age, sex, and BMI, which suggest a complex architecture of at least dozens
of associated areas with those phenotypes.

Conclusions: The published literature could contain a large proportion of redundant (possibly
confounded) associations that are largely prevented using LMMs. The parsimony of LMMs
results from controlling for the joint effect of all vertices, which prevents local and distal redun-
dant associations from reaching significance.
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1 Introduction

Brain MRI scans can generate hundreds of thousands of vertex/voxelwise measurements
per individual, which can be linked to other measured traits/diseases using mass univariate
vertex/voxelwise association analyses. Results of association analyses (and subsequent
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follow-up analyses) can shed light on the brain networks or cell composition relevant for the trait/
disease and may be leveraged for brain-feature-based phenotype prediction. However, brain
measurements may exhibit a pattern of correlation, owing to factors (e.g., head size, MRI scan-
ner/artifact,1 or demographics2) that can generate confounded brain-trait associations. Induced
local correlations with a true brain biomarker can generate a smear of association (i.e., a cluster
of associated vertices), which may limit the precise localization of the directly associated
regions. On the other hand, long-range vertex correlations caused or inflated by factors irrelevant
to the trait of interest, may be more prejudicial, as they can yield distal false positives (Fig. 1).

Two approaches can be used to limit the inflation of false positives described above. One is to
control for the confounders in the association testing, although it requires knowledge and meas-
urement of the factors influencing (or more generally associated with) the covariance between
brain measurements. Note that these factors can overlap with traditional confounders of neuro-
imaging studies (e.g., head size, age, sex, and head motion), and additional confounders are
being identified as sample sizes increase.3 Another correction strategy is to control for the other
vertices in the association testing, to remove the signal that could be attributed to another brain
vertex or region. The difficulty of such approach is that typically, the number of vertex/voxelwise
measurements (p) far exceeds the number of participants (N) in the study. The p ≫ N paradigm
implies that the marginal joint associations with all p vertices cannot be estimated in a single
general linear model (GLM).

Statistically, the challenge of mass univariate vertexwise analyses resembles that of genome-
wide association studies (GWAS) or methylation-wide associations studies (MWAS), which aim
to identify genomic regions associated with a phenotype in the presence of correlated features
(i.e., genetic variants or DNA methylation probes). Several studies have demonstrated that fea-
ture correlation [i.e., linkage disequilibrium (LD) or population structure in genetics] can result
in inflated false positive rate (FPR),4–6 even more so when the sample size increases.5 This led
GLMs to be replaced by linear mixed models (LMMs)6–8 that co-vary out all features by fitting
them as random effects. LMMs have been shown to better control the inflation of false positive
associations arising from LD or correlation between probes and to minimize the occurrence of
false positives in both GWAS and MWAS.6,7,9

LMMs are commonly used in neuroimaging to model longitudinal data.10 Instead, we rely
here on a formulation that allows fitting the high-dimensional brain image as a single random-
effect. Such LMMs allow estimation of the overall degree of association between a trait and a
high-dimensional brain image, coined “morphometricity” in the context of structural brain
measurements.11,12 Recently, we have shown that a single LMM framework was suited to esti-
mate morphometricity in large datasets, to draw links between traits through their associations
with similar brain structure (gray-matter correlation), and to build brain-based predictors.12 The
LMMs we propose here complement our previous work by identifying the vertices/voxels that
contribute to the morphometricity and phenotype prediction.

Fig. 1 (a) Illustration of the traditional confounding paradigm (and (b) of the confounding that
may arise in association studies performed across correlated brain features. One-sided arrows
represent a causal effect, and two-sided arrows a correlation.
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Here, we sought to evaluate whether the inflation of false positives observed in omics data
is also present in neuroimaging data. In the first part of the analysis, we performed extensive
simulations of continuous phenotypes from real gray-matter data to quantify FPR as well as
statistical power, mapping precision and prediction accuracy achieved from mass-univariate
analyses. We compared the performances of the current state-of-the-art GLMs to that of LMMs
inspired by omics association studies. In the second part, we sought to characterize the brain
regions associated with real phenotypes (i.e., age, sex, BMI, fluid IQ, and smoking status) that
previously exhibited significant morphometricity,12 to confirm the results obtained on simulated
traits. Our analyses relied on 14,451 MRI images collected by the UK Biobank (UKB), one of
the largest brain imaging initiative.13

1.1 Novelties and Contribution

The novelties and contributions of our paper are as follows:

• We propose LMMs for brain mapping, inspired from those using in genetics, which aims
at overcoming false positive issues found in standard analyses.

• By controlling for all brain measurements (fitted as a random effect), the LMMs remove
redundant associations leading to more parsimonious results.

• We demonstrate that, compared with the current state-of-the-art, the LMMs minimize FPR
while also maximizing power, mapping precision, and prediction accuracy.

2 Material and Methods

2.1 Models of Mass-Univariate Vertexwise Analyses

First, we considered five GLMs that differ in term of covariates used when estimating the asso-
ciation (bi) between the trait and the i’th (standardized) vertexwise measurement ðXiÞ. They can
be written under the form:

EQ-TARGET;temp:intralink-;e001;116;394y ¼ Zcþ Xibi þ ε; (1)

where y is the vector of phenotype for the N individuals, Z is a matrix of size N × q of q
covariates, and c is a vector of the q fixed effects.

The five GLMs are differentiated as follows: (1) GLM with no covariates (no covariates),
(2) GLM including the most commonly used covariates in similar analyses: age, sex, and intra-
cranial volume (ICV) (age, sex, ICV corrected), (3) and (4) GLMs including 5 and 10 principal
components (PCs) of gray-matter variation, respectively (5 global PCs, 10 global PCs), (5) GLM
including 10 PCs specific to the measurement type (cortical thickness, cortical surface, subcort-
ical thickness, or subcortical surface area), referred to as “10 modality specific PCs.”Gray-matter
PCs capture the main axes of covariations between vertices, and we expect that by controlling for
them we may be able to remove unmeasured or unknown factors contributing to long-range
correlation between vertices (which might include demographics, MRI machine, head motion,
software update, processing option, etc.). Note that PCs from genetic data are commonly used in
GWAS to limit the FPR of GLMs analyses14 but are rarely used in neuroimaging analyses. The
difficulties of PC correction are to determine the optimal number of PCs, which controls for
confounding effects without removing signals of interest. In practice, this may prove extremely
difficult considering that the optimal number of PCs could depend on the trait/variable of inter-
est, and that PCs are notoriously hard to interpret and have not been comprehensively inves-
tigated on these data. Thus, we arbitrarily chose two scenarios with the first 5 or 10 PCs. In
addition, GLMs without covariates are also very rare, but worth considering to appreciate the
effect of including covariates.

Finally, we considered three LMMs that can be seen as extensions of the previous approaches
in that they further control for all vertexwise measurements. The first LMMmodel (LMM global
BRM), analogous to the MOA (MLM-based omic association) model,6 can be written as

EQ-TARGET;temp:intralink-;e002;116;87y ¼ Xibi þ Xβþ ε: (2)
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Here, X is the N × p matrix of all standardized vertexwise measurements, β is the p × 1 vector
of joint vertex-trait associations. β is a vector of random effects, allowing for p > N, with
β ∼N ð0; Iσ2βÞ, and ε is the error term assumed to follow ε ∼N ð0; Iσ2εÞ. σ2β and σ2ε are the var-

iances of the random effects β and ε. The variance-covariance matrix for y is varðyÞ ¼ V ¼
XX 0σ2β þ Iσ2ε ¼ Bpσ2β þ Iσ2ε . Here, we regard B ¼ XX 0∕p as the brain relatedness matrix and

pσ2β the morphometricity (proportion of phenotypic variance captured by all vertices).15

We considered a second LMM (“LMM with covariates”) that includes known covariates
(age, sex and ICV) fitted as fixed effects. Thus, we can separate the effect of the random effects
from that of the known covariates on the results. The model becomes:

EQ-TARGET;temp:intralink-;e003;116;620y ¼ Zcþ Xibi þ Xβþ ε: (3)

Our third LMM (“LMM multi. BRM”) includes 4 random effects ðβ1; β2; β3; β4Þ, each cor-
responding to a type of vertices (cortical thickness, cortical surface area, subcortical thickness
and subcortical surface area).

EQ-TARGET;temp:intralink-;e004;116;552y ¼ Xibi þ X1β1 þ X2β2 þ X3β3 þ X4β4 þ ε: (4)

This more general LMM allows the distribution of effect sizes to differ based on vertex type,
rather than enforcing a single distribution over all types of measurements.15 Note that each ran-
dom effect takes up a single degree of freedom meaning that LMMs and GLMs have a com-
parable (large) numbers of degrees of freedom given the same sample size.

2.2 Statistical Testing and Multiple Comparison

We performed a χ2 test of the association between a vertex (Xi) and the phenotype using that, for

large sample size N, ð bi
SEðbiÞÞ

2 ∼ χ21 under the null hypothesis of no association. In each model

(GLM or LMM), we accounted for multiple testing over the vertices using Bonferroni correction,
thus setting a brain-wide significance threshold of 0.05∕652;283 ¼ 7.6e − 8. We chose the
straightforward Bonferroni correction over random field theory (RFT)16 as RFT requires statio-
narity and a smooth mesh of vertex-wise residuals, which is unlikely to be the case here (we did
not apply kernel smoothing on the data as it reduced the estimated morphometricity of the UKB
phenotypes15). In addition, RFT is not currently implemented to be performed using residuals of
LMMs or across several surfaces and type of measurements. Bonferroni correction is expected to
be conservative under the null hypothesis (no association) because the correlations between ver-
tices means that the effective number is tests lower than the number of tests conducted and used
for the Bonferroni correction.

2.3 MRI Image Processing

MRI images were mostly collected in Cheadle (for 96% of the sample) and Newcastle using
a 3T Siemens Skyra machine (software platform VD13) and a 32-channel head coil13 (see
Supplementary 1 in the Supplemental Material, for MRI sequence details).

We processed the T1w and T2 FLAIR images together to enhance the tissue segmentation in
FreeSurfer 6.0,17 which should result in a more precise skull stripping and pial surfaces defi-
nition. When the T2 FLAIR was not acquired or not usable, we processed the T1w image alone,
though a recent report showed this results in systematic differences in cortical thickness.18 This
may represent a source of noise in the data, albeit it was limited in term of number of individuals
(see quality control, Supplementary 1 in the Supplemental Material 1). We extracted vertex-wise
data mapping cortical surface area and thickness (“recon-all” processing in FreeSurfer) and used
the maximal resolution allowed by the software (fsaverage atlas - unsmoothed). In short,
FreeSurfer segments the gray/white and gray/cerebrospinal fluid borders, which delimits the
gray-matter. Surfaces are mapped onto a spherical atlas to align the cortical folding patterns
of the individuals, and a tessellation is applied. Cortical thickness is calculated as the closest
distance from the two gray-matter boundaries, for each vertex on the tessellated surface.19

Couvy-Duchesne et al.: Parsimonious model for mass-univariate vertexwise analysis

Journal of Medical Imaging 052404-4 Sep∕Oct 2022 • Vol. 9(5)

https://doi.org/10.1117/1.JMI.9.5.052404.s01
https://doi.org/10.1117/1.JMI.9.5.052404.s01


Surface area is measured as the mean area of all faces that meet at a particular vertex, on the gray/
white matter surface.20 We previously showed that this cortical processing maximized the
morphometricity for a wide range of phenotypes.15 In other words, this cortical processing
maximized the information retained by the processed MRI images. In addition, we applied the
ENIGMA-shape processing,21,22 where subcortical structures segmented in FreeSurfer are pro-
jected onto spherical atlases to quantify vertex-wise radial thickness and log Jacobian determi-
nant,21,22 which is analogous to a surface area.23 This yielded a vertex-wise characterization of
the hippocampus, putamen, amygdala, thalamus, caudate, pallidum, and accumbens. Overall, the
imaging data used in the analyses comprised 652,283 vertex measurements per individual:
299,009 for cortical thickness, another 299,034 for cortical surface area, 27,120 for subcortical
thickness and 27,120 for subcortical surface area.

In a post-hoc analysis, we also utilized smoothed cortical data (surface based kernel with
FWHM = 20 mm), in order to evaluate the robustness of our results to variation in the MRI
processing.

2.4 Main Sample for Simulation and Discovery

Our final sample comprised 9890 adults with complete cortical and subcortical data, aged 62.5
on average (SD ¼ 7.5, range 44.6 to 79.6) with slightly more (52.4%) female participants
(see Supplementary 1 in the Supplemental Material for participant inclusion and exclusion).
Of note, 341 participants did not have an exploitable T2 image.

We performed a stringent quality control (QC) to exclude one of each pair of individuals
whose brains were too similar or dissimilar relative to most other individuals, resulting in
1228 exclusions (12.4% of the sample). The main reason for this exclusion was to prevent bias
in the LMM estimates, although it should also remove individuals flagged as outliers by other
QC criteria (e.g. 80.6% of the participants processed using T1w only, spike-like cortical par-
cellation in FreeSurfer)12 (see Supplementary 1 in the Supplemental Material for more details on
QC). Importantly, all analyses were performed on the same list of individuals (post QC) to ensure
that performance of the models would be comparable.

2.5 Independent Samples for Prediction and Replication

Our first independent sample included an additional 4942 participants of the UKB with a T1w
image (downloaded in May 2018, most participants also had an exploitable T2w). The final
sample (N ¼ 4160 after processing and QC) was on average 63.1 years old (SD ¼ 7.46, range
46.1 to 80.3) with 52.1% of females.

In addition, we used the OASIS3 (Open Access Series of Imaging Studies) sample24 to evalu-
ate the generalizability of the prediction. The OASIS3 dataset gathers several longitudinal MRI
studies conducted in the Washington University Knight Alzheimer Disease Research Center over
the past 15 years. Our final sample included 1006 unique participants after processing based on
T1w images and QC. When several visits were available for a participant, we selected the one
with the most phenotypic information. Participants were 71.1 years old on average (SD ¼ 9.18,
range 42.6 to 95.7) and mostly female (55.5%). Almost a quarter of the participants (23.6%) had
a diagnosis of Alzheimer’s disease at the time of imaging.

2.6 Mass-Univariate Analyses on Simulated Phenotypes

2.6.1 Simulation of phenotypic traits from real gray-matter data

We simulated phenotypic traits from the UKB processed (standardized) gray-matter data, instead
of relying on synthetic/simulated images. This approach ensures the vertexwise data retains a
realistic correlation structure. In addition, our framework includes simulation of the phenotype
under not only the null hypothesis (H0) that no vertex is associated with the phenotype but also
the alternative hypothesis (H1) that a set of vertices are truly associated with the phenotype.

First, we randomly selected a set of associated vertices and drew their relative effects from a
normal distribution. We then calculated the simulated phenotypes as a linear combination of the
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individuals’ vertex values and noise.6 We considered three scenarios that differ in terms of num-
ber of associated vertices and total association with the phenotype. This global association
between gray-matter measurements and a trait has been coined morphometricity11,15 and may
be expressed as the proportion of the trait variance (R2) captured by the vertexwise measurement.
Our scenarios were: (i) 10 associated vertices accounting for a phenotype morphometricity of
R2 ¼ 0.20 (i.e., 20% of the trait variance); (ii) 100 associated vertices with R2 ¼ 0.50; (iii) 1000
vertices with R2 ¼ 40%. For each scenario, we simulated 100 phenotypes.

In follow-up analyses, we simulated phenotypes using the same parameters, this time restrict-
ing the associated vertices to a single type of measurement. This allowed evaluation of the speci-
ficity of each type of measurement, which possess a unique correlation pattern. In addition, this
ensures our phenotypes were not associated with cortical vertices only, which represent 90% of
the vertexwise measurements.

To evaluate the effect of smoothing on our results, we simulated phenotypes from smoothed
brain maps. For the ease of computation, we restricted the analysis of smoothed data to the case
of 10 associated vertices (R2 ¼ 0.2). We kept the same associated vertices (and weights) as in the
previous simulation from unsmoothed data. Finally, we randomly simulated 100 “null” traits, to
evaluate the calibration of the models under the null hypothesis of no association. All simulations
were generated using the OSCA software.6

2.6.2 Inflation of test statistics

First, we compared the empirical distribution of χ2 statistics to the expected distribution, which is
assumed to follow a χ2ð1Þ for non-associated (null) vertices. We considered the ratio of empirical
over expected median χ2, known as the inflation factor (λ), which is expected to be equal to one
across nonassociated vertices. We also used the nominal FPR defined as the proportion of null
vertices with p-values < 0.05 (expected to be 0.05). Correlation between associated and null
vertices (e.g., due to confounding factors) typically result in an inflation of test statistics, which
may cause null vertices to reach significance in mass-univariate analyses.

2.6.3 Discoverability and mapping precision

First, we quantified the model discoverability using the true positive rate (TPR) defined as the
proportion or truly associated vertices reaching significance (after Bonferroni correction).
Importantly, the TPR is dependent on the FPR, which can limit comparison across models (see
Sec. 3.2.4). In addition, we quantified the mapping precision of mass-univariate analyses by
reporting the median size of the true positive (TP) clusters. We defined TP clusters as sets
of significant contiguous vertices of the mesh that contain a TP vertex.

2.6.4 False positives and statistical power

We reported the familywise error rate (FWER) defined as the proportion of replicates with at
least one false positive vertex (null vertex significant after Bonferroni correction). In the presence
of strong correlation between neighboring vertices, it is statistically difficult to separate a TP
vertex from the flanking ones, thus we can expect an FWER greater than 5%. Hence, we also
reported the cluster FWER defined as the proportion of replicates with at least one false positive
cluster. FWER is more stringent than false discovery rate (FDR), implying that any false pos-
itives that remain after FWER correction would also be observed using FDR.

To account for the models’ differences in FWER, we further reported the statistical power,
defined as the TPR for a set risk alpha. We chose cluster FWER < 0.2, which was easier to achieve
than the traditional FWER < 0.05, as we enforced comparable FWER by iteratively lowering
the significance threshold, for each of the models (Appendix 2 in the Supplemental Material).
The choice of risk alpha does not impact the relative performance of the models, and we can
expect models best powered for FWER < 0.2 to also be best powered at other FWER levels.

Finally, we reported the proportion of false positive clusters out of all significant clusters
(cluster FDR). We labeled false positive clusters, the groups of significantly associated, contigu-
ous vertices that did not contain a TP association.
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In follow up analyses, we simulated associations on a single type of vertexwise measure-
ments, to evaluate the probability of false positive (FWER) arising on the same type of
measurements, other types of measurements as well as contralateral regions.

2.6.5 Prediction from significant vertices

We evaluated the prediction accuracy achieved from the brain regions reaching significance, in
the different mass-univariate models. We used prediction as a meta-criterion to compare the
model performances, as it is dependent on power, true and false positives, and association effect
sizes. We selected the most significant vertex in each cluster and constructed a linear predictor

using association weights [b̂i, see Eqs. (1) and (2)] estimated from the different mass-univariate
analyses. Because some significant clusters might contain several independent signals, we also
built predictors that included all significant vertices. We evaluated the prediction of in the
independent UKB and OASIS3 samples.

2.6.6 Mass-univariate analyses of UK Biobank phenotypes

Next, we performed mass-univariate vertexwise analyses on five UKB phenotypes that showed
significant replicated morphometricity:15 age, sex, BMI, smoking status, and fluid intelligence.
We used the raw fluid intelligence score provided by the UKB, a nonstandard test which has
demonstrated some reliability in a test–retest analysis.25

For each UKB phenotype and model, we reported the number of significant vertices, number
of significant clusters as well as their sizes. We defined significance using a Bonferroni signifi-
cance threshold of 0.05∕ð652;283 × 5Þ ¼ 1.5e−8, which accounts for the total number of tests
performed. For those phenotypes, the true pattern of association is unknown which prevents
evaluation of the FPR (or power) of the different approaches. However, false positives or
redundant associations should not improve prediction accuracy. In this regard, we evaluated each
GLM or LMM model in both the UKB replication and OASIS3 datasets. As above, we used
linear predictors and reported the prediction accuracy (correlation) controlling for age, sex, ICV,
and site. In OASIS3, we also corrected for clinical status (Alzheimer’s disease and mild cognitive
impairment).

3 Results

3.1 Phenotypes Simulated Under H0

We found that all GLM and LMM models behaved well under the null hypothesis, as indicated
by no inflation of test statistic, FPR, or of FPR (FWER). As expected under a stringent
Bonferroni correction, all approaches were conservative as indicated by FWER < 3% (Fig. S1
in the Supplemental Material).

3.2 Phenotypes Simulated Under H1

3.2.1 Inflation of test statistics

First, we quantified whether we could observe an inflation of test statistics on the vertices not
associated with the simulated phenotypes. As expected in presence of correlation between truly
associated and null vertices, we observed a global inflation of (median) test statistics when using
GLMs (Fig. 2; Table S1 in the Supplemental Material). This was confirmed by an FPR greater
than 5% for all GLM models even though controlling for covariates or PCs reduced the inflation
of test-statistics compared with the “no covariates” GLM. In comparison, LMMs appropriately
controlled the inflation of test statistics on null vertices (λ < 1 and FDR < 5%; Fig. 2; Table S1 in
the Supplemental Material).

Couvy-Duchesne et al.: Parsimonious model for mass-univariate vertexwise analysis

Journal of Medical Imaging 052404-7 Sep∕Oct 2022 • Vol. 9(5)

https://doi.org/10.1117/1.JMI.9.5.052404.s01
https://doi.org/10.1117/1.JMI.9.5.052404.s01
https://doi.org/10.1117/1.JMI.9.5.052404.s01


3.2.2 True positive rate

First, we confirmed that the TPR (after Bonferroni correction) was dependent on the scenarios
that corresponded to different effect sizes for the vertices. For example, about 70% of the truly
associated brain regions were detected in the case of a simple trait (10 associated vertices each
accounting for 2% of the phenotypic variance on average). On the other hand, <5% of the asso-
ciated brain regions were identified for the most complex phenotypes (scenario 3, 1000 vertices
each accounting for 0.04% of variance, Fig. 2; Table S1 in the Supplemental Material).

Fig. 2 Performance of GLMs and LMMs for mass-univariates vertexwise analyses: test inflation,
statistical power, and FPR. The columns correspond to the different scenarios considered when
simulating traits. We simulated 100 phenotypic traits for each scenario. Bars represent ±SE across
the 100 replicates. Clusters are composed of groups of contiguous vertices each significantly
associated with the phenotype (after Bonferroni correction). We labeled them as false positives
if they did not include a TP association.
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Across all scenarios, LMMs exhibited a slightly reduced TPR compared to the GLMs (Fig. 2;
Table S1 in the Supplemental Material). We investigated this result using phenotypes simulated
from a single type of measurement. We found TPR of LMMs to be especially reduced on sub-
cortical thickness and surface area (Fig. S2 in the Supplemental Material).

3.2.3 False positives

Here, we evaluated the occurrence of false positive vertices or clusters from our simulations. We
found that every single simulation yielded at least 1 false positive vertex after Bonferroni cor-
rection (FWER ¼ 1, Fig. 2). We noted that the FWER of 0.97 (SE ¼ 0.02) found for LMMs in
the scenario of “1000 associated vertices,” came from three simulations returning no significant
associations.

When evaluating the results at a cluster level, we found that using GLMs almost always
resulted in one or more false positive cluster (Fig. 2; Table S1 in the Supplemental Material),
leading to cluster FWER > 85%. Cluster FWER was reduced to 49% to 72% using LMMs
(Fig. 2; Table S1 in the Supplemental Material). Despite this improvement, no model ensured
a cluster-FWER below 5%. LMMs also minimized the proportion of false positive clusters (clus-
ter FDR), compared with the GLM approaches. At the extreme, more than 70% of the significant
clusters were false positives using GLMs without covariate. This reduced to about 60% when
controlling for age, sex, and ICVand further reduced to <17% using LMMs (Fig. 2; Table S1 in
the Supplemental Material).

Next, we simulated phenotypes associated with a single type of measurement and reported
the FWER for each type of measurement in Figs. S3–S6 in the Supplemental Material.
This allowed evaluation of whether false positives could appear as a result of associations with
vertices from other types of measurements. We found that using GLMs resulted in contamination
of signal between all the different types of measurements, as indicated by FWER > 5% (Figs.
S3–S6 in the Supplemental Material). In comparison, LMMs always minimized the probability
of false positives appearing on nonassociated types of measurement. In particular, LMMs
ensured that associations on the cortex did not inflate the FPR on subcortical structures, and
vice versa (FWER < 5%).

3.2.4 Statistical power

We found that the models differ in terms of FPR, which limits the direct comparison of TPR.
Instead, we reported the statistical power, which consists of the TPR for a fixed level of FWER
(cluster FWER < 0.2). We found the LMMs to be more powerful than the GLMs (Fig. 2;
Supplementary 2 in the Supplemental Material).

3.2.5 Mapping precision

We defined mapping precision as the median size of the TP clusters. LMMs led to a more precise
localization of the associations by minimizing the size of TP clusters (whether we looked a
clusters median or maximal size, Fig. 3; Table S1 in the Supplemental Material).

The median size of TP clusters was reduced by a factor>10 on subcortical measurements, and
by a factor greater than two on cortical thickness when using LMMs (Table S1 in the Supplemental
Material). Of note, positive clusters on cortical surface area were particularly small (most clusters
were composed of a single vertex), independent of the model used, Fig. 3; Table S1 in the
Supplemental Material). However, LMMs still offered a greater precision than the GLMs when
considering the maximal cluster size (Table S1 and Figs. S3–S6 in the Supplemental Material).

3.2.6 Prediction accuracy from significant vertices

As a way of aggregating the previous metrics of performance, we compared prediction accuracy
achieved from significant vertices, using the UKB replication sample. Across all models and
scenarios, selecting the top vertex per significant cluster maximized prediction accuracy, com-
pared with including all significant vertices. This was expected, as significant vertices from the
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same cluster tag likely redundant information, leading to overweight the prediction signal com-
ing from large clusters.

In simulation scenarios 1 and 2, we found that including more covariates in the GLMs
resulted in greater prediction accuracy despite that predictors included fewer vertices (Fig. 3;
Table S1 in the Supplemental Material). In addition, LMMs yielded marginally better prediction
accuracy than the best GLM using even fewer vertices (Fig. 3; Table S1 in the Supplemental
Material), consistent with observation from previous studies.6,9 For the third simulation scenario,
the prediction accuracy was comparable and limited for all models (Fig. 3; Table S1 in the
Supplemental Material).

Fig. 3 Mapping precision and prediction accuracy from significant vertices between the different
models of mass-univariate analyses. The columns correspond to the different simulation scenar-
ios. We simulated 100 phenotypic traits for each scenario. Bars represent ±SE across the 100
replicates. Clusters are composed of groups of contiguous vertices each significantly associated
with the phenotype (after Bonferroni correction). We labeled them as TPs if they included a TP
association. (Mapping) precision refers to the median size of the TP clusters.
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3.2.7 Analyses using smoothed cortical surfaces

We repeated the analysis using smoothed cortical meshes of surface and thickness (FWHM =
20 mm), which is more commonly used in the literature than unsmoothed meshes (Tables S4–S8
in the Supplemental Material). We sought to investigate how robust our results were to such
variation of MRI processing.

Overall, smoothing did not change the results of the model comparison. LMMs resulted again
in a reduced FPR (lower cluster FWER and cluster FDR) as well as reduced power (seemingly
more important than in the unsmoothed case). LMMs maximized mapping precision and predic-
tion accuracy, despite relying on fewer significant clusters (Fig. S7 in the Supplemental Material).
Of note, performing analyses on smoothed data decreased the mapping precision, leading to TP
clusters roughly 10 times larger on cortical meshes (Fig. 2; Fig. S7 in the Supplemental Material).

Data smoothing resulted in a large inflation of test statistic and FPR for GLMs (Fig. 2; Fig. S7
in the Supplemental Material), which is to be expected as smoothing increases the amount of
correlation between vertices. We noticed that smoothing led to an increase of cluster FWER for
the GLM with 10 PCs, while it decreased cluster FWER for the LMMs (despite the associated
vertices and effect sizes remaining the same). This result warrants a more fined-grained evalu-
ation of the associations. We can only hypothesize that the 20 mm (FWHM) smoothing can
induce medium-range correlations (hence medium range false positives in GLMs) while it also
increases local correlation which might aggregate false positive clusters in LMMs.

3.3 Morphometricity of the Phenotypes

First, we confirmed that the morphometricity estimates of our simulated traits matched the values
chosen in simulations (Fig. S8 in the Supplemental Material). For the five UKB phenotypes,
we also found consistent morphometricity using the three LMM models (Table S2 in the
Supplemental Material), suggesting associations across all types of vertex measurements.

BMI and fluid intelligence exhibited large and moderate morphometricity [R2 ¼ 0.51

(SE ¼ 0.031) and R2 ¼ 0.17 (SE ¼ 0.034)] but only a limited association with age, sex, or the
first 10 PCs from vertexwise data (adjusted R2 with 10 PCs: R2 ¼ 0.032 for fluid intelligence,
R2 ¼ 0.033 for BMI), which resembles the case of our simulations. Age and sex displayed high
morphometricity [R2 ¼ 0.83 (SE ¼ 0.026) and R2 ¼ 0.99 (SE ¼ 0.024)] and large associations
with the first 10 PCs (adjusted R2 ¼ 0.41 for age, R2 ¼ 0.43 for sex). Smoking status is a dis-
crete variable (nonsmoker, former smoker, and still smoking) with a morphometricity of R2 ¼
0.12 (SE ¼ 0.029), and adjusted R2 ¼ 9.2e − 3 with first 10 PCs (Table S2 in the Supplemental
Material). Note that the morphometricity estimates are slightly larger than the ones reported
previously,15 which had mean cortical thickness and area regressed out.

3.4 Analysis of UK Biobank Phenotypes

We sought to confirm the differences in model performance by applying them to real phenotypic
traits. Using GLM without covariates resulted in many vertices and clusters reaching signifi-
cance (Fig. 4; Table S2 in the Supplemental Material). Unsurprisingly, correcting for covariates
that account for a large fraction of the phenotypic variance (see adjusted R2 with covariates and
PCs, Table S2 in the Supplemental Material), drastically reduced the number of associations in
the GLMs. For example, correcting for 10 PCs in mass-univariate analyses of age and sex
reduced the number of associated vertices by a factor 8 to 13, compared with the GLM without
covariates (Fig. 4; Table S2 in the Supplemental Material). For smoking status, the number of
significant vertices and clusters also dropped despite a negligible association with PCs (Fig. 4;
Table S2 in the Supplemental Material). Similarly, for fluid intelligence, correcting for the top 10
PCs did not remove much of the trait variance over controlling for age sex and ICV (adjusted
R2 ¼ 0.030 with age, sex, ICV, adjusted R2 ¼ 0.034 when further controlling for PCs) though it
greatly reduced the number of associations. In addition, the more covariates we corrected for,
the smaller the size of the associated clusters, suggesting they do remove confounding effects.

We found that across all phenotypes, LMMs resulted in a more parsimonious pattern of asso-
ciations (Fig. 4; Table S2 in the Supplemental Material). Thus, using the LMM with a single
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random-effect component, we identified five clusters associated with BMI, 8 with age and 6 with
sex (Table S2 in the Supplemental Material). LMM with covariates yielded fewer associations,
while LMM with multiple random-effects was the most conservative (Table S2 in the
Supplemental Material).

Next, we compared the prediction accuracy achieved from the vertices reaching significance
using each model (Fig. 4; Table S2 in the Supplemental Material). Predicting our traits of interest
allows evaluation of how power and FPR of the different models may counterbalance each other.
In addition, prediction into independent samples quantifies the generalizability of findings
obtained in the different mass-univariate approaches. For BMI, we found that prediction accu-
racy from GLMs in the UKB replication sample was greater than that in the OASIS3 sample,
which suggests that GLMs-based predictors capture information that is sample specific (e.g., the
same confounders are more likely to be shared in the same cohort than across different cohorts).
In contrast, the prediction accuracy from LMMs was comparable between the UKB and OASIS3
samples, pointing toward a better generalizability of the prediction. This suggests that the higher
prediction accuracy in the UKB replication sample for GLM is likely to be driven by con-
founding factors shared between UKB data sets. The comparable performance of GLM and
LMM seen on OASIS3 for BMI aligns with our simulations.

For age and sex prediction, prediction accuracy of LMMs was sometimes inferior to that
achieved from GLMs, in particular those from the simplest models (“no covariates” and “age,
sex, ICV”). Overall, prediction based on LMMs generalized well (comparable accuracy in the
UKB and OASIS3), while the GLMs often displayed heterogeneous performances across the test
samples (in particular for the GLMs with PCs, which may suffer from PCs being different
between samples).

Regarding fluid IQ and smoking status, no LMM predictor was available, and the different
GLMs resulted in comparable, albeit limited prediction accuracy.

3.5 Description of Associated Regions

We listed the significant associations identified using LMM (global BRM) in Table S3 in the
Supplemental Material (Figs. S9–S11 in the Supplemental Material for Manhattan plots, and

Fig. 4 Number of significant clusters and prediction accuracy for the real UKB phenotypes. Bars
represent the 95% confidence intervals of the prediction accuracy (correlations). Dots indicate
prediction accuracy in the UKB replication sample, while stars correspond to the prediction
achieved in the OASIS3 sample. Prediction accuracy is reported controlling for age, sex (when
pertinent), ICM, and site/machine. In the OASIS3 dataset, we further controlled for clinical status.
The dashed lines correspond to the estimated morphometricity, which corresponds to the theo-
retical maximum prediction accuracy achievable from a linear predictor.
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Figs. S12–S16 for brain plots in the Supplemental Material). The significant associations were in
the range of R2 ¼ 0.5% to 1%. Most associations were observed with subcortical volumes
though the top cluster for sex was spatially located at the border of the lateral–orbitofrontal and
medial orbitofrontal gyri (based on the Desikan atlas26). Out of the 85 vertices associated with
age, sex, and BMI, 68 replicated in an independent UKB sample (p < 0.05∕85, Table S2 in the
Supplemental Material). In particular, 4/11 associations replicated for BMI, 43/47 for age, and
21/27 for sex. The replication rate was slightly lower in the OASIS3 dataset, where none of the
vertices reached significance for BMI, 15/47 associations were replicated for age, and 12/27 for
sex. Overall, the sign of the associations was consistent across the three datasets (Table S3 in the
Supplemental Material).

4 Discussion

Using extensive and realistic simulations, we evaluated the statistical power, FPR, and precision
of GLMs and LMMs for vertex-wise gray-matter association studies. In particular, we evaluated
the different models in the context of big-data neuroimaging (large sample size but even greater
number of correlated brain vertices).27 We consistently found that using state-of-the-art GLMs
resulted in a large number of false positive associations and clusters, whether we used smoothed
or not-smoothed gray-matter surfaces. Thus, across all scenarios tested, more than 60% of the
significant clusters were false positives using a standard GLM that controlled for age, sex, and
ICV. In comparison, FDR was below 17% using LMMs, though still greater than the 5% expect-
ation (Table S1 in the Supplemental Material, Fig. 2, and Fig. S7 in the Supplemental Material).
In addition, we showed that unlike GLMs, LMMs could appropriately separate cortical from
subcortical associations, even though signal contamination between thickness and surface still
occurred (Figs. S2–S5 in the Supplemental Material).

Our results suggest that previously reported results from mass univariate vertexwise analyses
obtained using standard GLM approaches could contain many redundant associations, some of
which are likely to be false positives induced by confounding factors that cause correlation
between vertices [e.g., Refs. 28 to 31, see also Fig. 1(b)]. Note that albeit redundant in term
of association and prediction, some of the brain regions identified using GLM may correspond
to indirect manifestations of the trait/disease of interest, which may be relevant to understand the
dynamics of gray-matter structure. Importantly, the type 1 error (>5%) we observed in simu-
lations also warns against taking for granted results from LMMs.

The increased FPR for GLMs has been well documented in omics association analyses stud-
ies (e.g., GWAS8,14 or MWAS6,9) and has been attributed to proximal and distal correlations
between features, caused by factors independent of the trait of interest (e.g., genetic ancestry
in genetics,14 cell composition of the biological sample, and smoking status in DNA
methylation6,32). On the other hand, LMMs can reduce the probability of generating false pos-
itives, by fitting all other vertices as random effects which accounts for the complex correlation
structure between vertices within and between individuals. In brain imaging, more work is
needed to identify the factors that contribute to local and distal correlations between vertices,
hence inducing a correlation between true associations and “null” vertices, beyond the usual
covariates or confounders used in neuroimaging (e.g., MRI scanner/artefact1 or demographics2).

LMMs yielded fewer TP associations, using the Bonferroni adjusted significance threshold
(in particular for the simulated associations on the subcortical nuclei; Fig. S2 in the Supplemental
Material). However, this result must be interpreted with caution as it may be partly due to a more
stringent control of false positives, resulting in overall fewer vertices reach significance (Fig. 2;
Table S2 in the Supplemental Material). To better compare the models performances, we esti-
mated statistical power (i.e., TPR for a set FPR) and noted that the LMMs were more powerful
than the GLMs (Fig. 2, Table S2 in the Supplemental Material, Supplementary 2 in the
Supplemental Material).

Despite this, LMMs are known to suffer from a power reduction, which arises from the dou-
ble fitting of the vertex of interest, once as fixed effect and again as a random effect [Eq. (2)].7,33

For subcortical structures, the effect of double-fitting could be exacerbated by the high level of
correlation between vertices. A workaround7 is to exclude the candidate vertex (and vertices
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strongly correlated) from the BRM calculation,33 though this requires computation of the BRM
p times (complexity is OðpN3Þ, where N is the sample size and p is the number of vertices),
which becomes impractical for large sample sizes.7,33 In comparison, the current LMM imple-
mentation makes our analysis scalable to samples sizes of tens of thousands [computational
complexity of OðpN2 þ N3 þ pNÞ].6 It should be noted that restricted maximum likelihood
estimation approach used in LMMs requires substantially more computational resources than
the GLMs and thus requires the use of high-performance clusters.

Beyond power and FPR, we observed from simulations that LMMs could pinpoint the gray-
matter association with greater precision (smaller clusters of TPs, Fig. 3). Lastly, we found that
prediction achieved from clusters reaching significance in LMMs was on par with that from the
best GLMs (Fig. 3), despite fewer vertices included in the predictor. This suggests a higher
specificity of the LMMs. Overall, our simulations indicate that LMMwith a single random effect
currently offers a good trade-off between power and FPR. However, it still fails to ensure a
cluster FWER below 5% (also reported on MWAS6), despite a stringent Bonferroni correction
to account for multiple testing.

Next, we applied the mass-univariate vertexwise models to five real phenotypes of the UKB:
age, sex, BMI, smoking status, and fluid IQ. As in the simulations, the LMMs identified fewer
vertices and clusters than the GLMs (Fig. 4, Table S2 in the Supplemental Material). The LMM
with multiple random-effect components was the most stringent (a single cluster of association),
consistent with simulations which showed it had the lowest FWER and statistical power. In
contrast, the LMM with a single random-effect component identified several cortical and sub-
cortical associations with BMI, age and sex (Table S3 in the Supplemental Material). Most
(12/19) of the top vertices in the associated cluster replicated in the UKB left out sample, and
six replicated in the OASIS3 sample (Table S3 in the Supplemental Material). The lower rep-
lication rate in OASIS3 may be due to a lower power even though we cannot rule out that the
same confounders might act similarly on the two UKB data sets. Overall, replication may be
warranted to conclude about an association in future studies, considering the inflation of false
positives (even when using LMMs, Fig. 2). The top associated vertices with age, sex, and BMI
each captured <1% of the phenotypic variance, suggesting that many more small associations are
likely to account for the full morphometricity of the phenotypes (Table S2 in the Supplemental
Material). Our results echo the warning against the risk of small associations being confounded
(e.g., by artifacts) in big-data neuroimaging,27 which was confirmed by a recent exploratory
study of putative MRI confounders in the UKB.3 Note that LMMs can reduce false positive
associations caused by correlations across and within the different types of measurements
(Figs. 2 and 3). Finally, unlike in our simulations (Fig. 3), LMMs often resulted in lower pre-
diction accuracy than GLMs in the UKB left out sample (Fig. 4). Nonetheless, prediction from
LMMs generalized better in the OASIS3 dataset (Fig. 4).24 This suggests that LMMs result in a
more robust and parsimonious predictor, less sensitive to sample specific vertexwise patterns and
confounders.

In the past years, many studies have been published on the association between gray-matter
structure and our phenotypes of interest (see Tables S4–S8 in the Supplemental Material for a
selective review of publications). Our simulation and empirical results suggest that some of these
studies could report a substantial number of false positive or redundant associations.
Nevertheless, due to the limitations outlined below, it is unclear which of these studies suffer
from this issue and to which extent.

First, it has been shown in the omics literature that power of LMM may be reduced for phe-
notypes strongly associated with the covariation between features.7,34 This is likely the case for
age and sex as indicated by their strong association with the PCs calculated from vertex–wise
data (Table S2 in the Supplemental Material). This may be an important limitation for pheno-
types associated with a cascade of changes in gray-matter, for which LMM would be over
conservative.

In addition, LMM assumes a normal distribution of random effects, which may not be real-
istic for all phenotypes studied. It is equivalent to assuming highly regionalized and specialized
brain regions, each displaying a small association with the phenotype. Thus, LMM may be sub-
optimal under some architectures of association, such as if only a specific but sizable brain region
is associated with the trait. Several models have been proposed to relax the LMM hypothesis, for
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example, to include large/outlying associations as fixed effects (stepwise LMM35), break down
the feature list into sets of small and large associations (data driven approach: MOMENT6), or
consider more complex distributions using Bayesian LMMs (Bayesian alphabet34,36). They
remain to be evaluated in the context of vertexwise analyses. More simulations are warranted,
to study other trait architectures, different trait distributions (e.g., skewed, discrete) or to evaluate
more sophisticated models. Of note, we limited our trait complexity to 1000 associated brain
regions, even if the true pattern of association might be more complex. Our simulations suggest
that LMM outperform a GLM independently of the trait complexity, but also that larger samples
are required to study traits with more complex architecture (Fig. 2). Our framework of simulation
may be easily adapted for such investigations and offers the advantage of estimation of statistical
power as well as FPR, which are not often reported at the same time.37,38

The nature of the gray-matter regions identified in our GLM analyses of real phenotypes (for
which the truth is unknown) can be a matter of debate, which depends on the (also unknown)
nature of the correlation between vertices. Two key scenarios can explain the correlation but the
data currently available to us does not allow to differentiate between them. First, the correlation
could be solely due to confounders [e.g., Fig. 1(b)], in which case the distal associations are false
positives. Second, the correlation between vertices could reflect dynamic brain pathways rel-
evant to the trait of interest. In this case, one could describe the GLM associations not found
using LMM as redundant rather than false positives. Since we cannot differentiate between these
two important causes of between-vertex correlation, we chose to label LMM models as parsi-
monious, until we understand better the effect of confounders on the vertices correlation struc-
ture as well as the longitudinal changes in gray-matter and their relationship with the phenotypes.

Finally, some additional limitations are worthy of note as they may limit the interpretation of
mass-univariate vertexwise analyses (compared with GWAS results). First, gray-matter associ-
ations may be both causes or consequences of the phenotype studied, unlike GWAS findings,
which can impact how to consider redundant associations. At one end of the spectrum are phe-
notypes such as age for which the direction of the causality is obvious (nothing causes chrono-
logical age). When describing which parts of the brain are affected by aging, one may be
interested in reporting all associations, including all indirect and redundant. Though, there is
no guarantee that those brain regions correctly map the brain pathway of ageing as they might
also reach significance due to confusion factors. On the other hand, for many other phenotypes,
the direction of causality is unclear (e.g., smoking, BMI) and one may prefer a more parsimo-
nious and robust brain mapping. Second, gray-matter vertices are semiarbitrary features which
may be defined and measured in different ways (e.g., different cortical meshes in FreeSurfer).
For instance, the resolution of the cortical tessellation is arbitrary and thus so is the number of
local vertices which are found to be significant. Hence, the results presented might differ if one
were to use a different MRI processing or vertex definition (e.g., volume processing from SPM,
coarser surface mesh). In addition, we used Bonferroni to control for multiple testing, although
approaches based on RFT are more commonly used (Tables S4–S8 in the Supplemental
Material).16 RFT-based correction is reportedly less stringent than Bonferroni (at least for
smoothed data, on which the RFT hypotheses are more likely to be met),39 which suggests that
RFT would also suffer from the inflation of test statistics that we reported.

Furthermore, we did not consider all possible covariates in GLM analysis, focusing on the
more commonly used in previous analyses (age, sex, ICV, Tables S4–S8 in the Supplemental
Material). More work is needed to evaluate the extended set(s) of covariates which have been
recently proposed, from a large-scale study of the UKB data.3 Finally, mass-univariate results
may depend on the study sample used, which raises the question of generalizability into to
samples from different age or ethnic groups or with different MRI qualities for instance.

In summary, we found that results obtained using the current state-of-the-art models (GLMs)
used in MRI-trait association analyses likely suffer from a large inflation of false positive or
redundant associations due to the unaccounted correlation between vertices. In contrast, LMMs
allow to control for all vertices fitted as a random effect, which result in a more parsimonious,
robust, and conservative characterization of the localized associations between a phenotype and
gray-matter structure. However, LMM results should still be interpreted with caution as our
simulations show that the FPR remains higher than the standard type 1 error of 5%, even after
Bonferroni correction.
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Code, Data, and Materials Availability

Data used in this manuscript are held and distributed by the OASIS and UKB teams. We have
released the code used in image processing and analyses to facilitate replication and dissemination
of the results (https://baptistecd.github.io/Brain-Mapping-LMM/). Upon publication, we will also
release, the summary statistics of mass-univariate analyses performed on the UKB phenotypes
(https://cnsgenomics.com/content/data). Supplementary figures (Figs. S1–S16), tables (Tables
S1–S7), and sections (Supplementary 1 and 2) may be found on the GitHub repository: https://
github.com/baptisteCD/Brain-Mapping-LMM/blob/main/Supp._Article_JMI.pdf. Note: JMI
does not require review of supplemental material; supplemental material may not have been
reviewed.
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