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Abstract. We propose a method to estimate the surface normal of concave objects. The target
object of our method has a specular surface without diffuse reflection. We solve the problem by
analyzing the polarization state of the reflected light. The polarization analysis gives a constraint
to the surface normal. However, polarization data from a single view has an ambiguity and can-
not uniquely determine the surface normal. To solve this problem, the target object should be
observed from two or more views. However, the polarization of the light should be analyzed at
the same surface point through the different views. This means that both the camera parameters
and the surface shape should be known. The camera parameters can be estimated a priori using
known corresponding points. However, it is a contradiction that the shape should be known in
order to estimate the shape. To resolve this problem, we assume that the target object is almost
planar. Under this assumption, the surface normal of the object is uniquely determined. We show
that the surface normal of the nonplanar part can also be estimated using the proposed method.
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1 Introduction

Factories in industrial fields have a high demand for estimating the shape of cracks since it is
quite important for quality control of the products. Although there are many methods for
detecting cracks,1 few methods have been proposed for estimating the shape of cracks.
Therefore, there is a great demand for estimating the shape of concave objects of highly specular
surfaces since it is a challenging task. This paper proposes a method that estimates the surface
normal of a black specular object with a concave shape by analyzing the polarization state of the
reflected light in which the target object is observed from multiple views.

Three-dimensional (3-D) modeling techniques have been intensively investigated in the field
of computer vision. These techniques can be categorized into two types: the geometric approach
and the photometric approach. The geometric approach uses the geometrical structure of the
scene, such as time-of-flight (ToF) laser range sensor, multinocular stereo, or structured light
projection. The photometric approach uses the light reflected from the scene, such as photomet-
ric stereo or shape from polarization. Shape from specularity has been extensively surveyed by
Ihrke et al.2

A smooth surface normal can be obtained using a photometric approach. Polarization3–5 is
one of the photometric clues that can be used to obtain a smooth surface normal. Koshikawa and
Shirai6 used circular polarization to estimate the surface normal of a specular object. Guarnera
et al.7 extended their method to determine the surface normal uniquely, by changing the lighting
conditions in two configurations. Morel et al.8 also disambiguated it using multiple illumination;
however, they did not solve the ambiguity of the degree of polarization (DOP)3–5 because they
did not use circular polarization. Saito et al.9 proposed the basic theory for estimating the surface
normal of a transparent object using polarization. Barbour10 approximated the relation between
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the surface normal and the DOP and developed a commercial sensor for shape from polarization.
Kobayashi et al.11 estimated the surface normal of transparent thin objects using DOP. They also
estimated the thickness by analyzing the light interference. Miyazaki et al.12 estimated the sur-
face normal of a transparent object by analyzing the polarization state of the thermal radiation
from the object. Miyazaki et al.13 attempted to estimate the surface normal of a diffuse object
from a single view. Miyazaki et al.14 used a geometrical invariant to match the corresponding
points from two views to estimate the surface normal of a transparent object. Miyazaki and
Ikeuchi15 solved the inverse problem of polarization ray tracing to estimate the surface normal
of a transparent object. These methods first calculate the polarization data from input images,
while Yu et al.16 used the input images themselves to estimate the surface normal without explic-
itly calculating the DOP.

Wolff and Boult17 developed the basic theory for showing that polarization analysis can esti-
mate a surface normal from two views if the corresponding points are known. Rahmann and
Canterakis18 estimated the surface normal of a specular object from multiple views by iteratively
finding the corresponding points of these views. Rahmann19 proved that only the quadratic sur-
faces are estimated if the corresponding points are searched iteratively. Atkinson and Hancock20

analyzed the local structure of an object to find the corresponding points between two view points
to calculate the surface normal from the polarization of two views. Atkinson and Hancock21 also
provided a detailed investigation of surface normal estimation for a diffuse object from a single
view. Huynh et al.22 estimated not only the surface normal but also the refractive index.

Kadambi et al.23 combined the 3-D geometry obtained by a ToF sensor and the surface normal
obtained from the DOP. Smith et al.24 combined the depth sensor and the shape from polarization.

Cui et al.25 used structure from motion, while Yang et al.26 used SLAM in addition to
the shape from polarization. Miyazaki et al.27 combined the visual hull and the shape from
polarization.

In this study, we propose a method for creating a 3-D model using both polarization analysis
and planarity assumption. The principal target objects are smooth surfaces with high specular
reflection and low diffuse reflection, which are annoying targets in conventional techniques.
We first calibrate multiple cameras to calculate the geometrical relationships among them. We
observe the object from multiple viewpoints using a polarization imaging camera. To determine
the corresponding point among multiple views, we assume the target object as planar. However,
this assumption simply produces only a planar shape; thus we also use polarization information
to estimate the nonplanar part of the object. The shape-from-polarization method can estimate
the shape of black objects with high specularity, which cannot be estimated using the photo-
metric stereo method because there are no diffuse reflections. The polarization information of the
object is obtained from multiple viewpoints using a polarization imaging camera. The polari-
zation data must be analyzed at identical points on the object surface when observed from multi-
ple viewpoints. Thus, the planarity assumption can be used for estimating the surface normal
from polarization data. The target object of our method is almost planar except for a crack with
a small size.

Miyazaki et al.’s method27 relies on the visual hull. It is difficult to estimate a planar shape
using a visual hull; in addition, it is impossible to estimate a planar shape with infinite size
[Fig. 1(a)]. Our method can also be applied to infinite plane [Fig. 1(b)]. Thus, our method over-
comes the disadvantage of their method,27 which means that the proposed method is fundamen-
tally superior to their method27 if the target object is almost planar.

We describe our method in Sec. 2 and present our results in Sec. 3. The theory shown in Sec. 2
assumes that the target object must be completely planar. However, Sec. 3 empirically proves that
our method can successfully estimate the surface normal even if the object is not completely planar.
We discuss the advantages and disadvantages of our method and conclude the paper in Sec. 4.

2 Using Polarization in Estimating the Surface Normal of Concave
Objects

2.1 Algorithm Flow

First, we explain the flow of our method (Fig. 2).
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Since we observe the target object from multiple viewpoints, we calibrate each viewpoint to
obtain each camera parameter. Although any calibration pattern works well, this paper assumes
that each camera is calibrated using four points marked at the vertices of a square for clarity. The
area that is surrounded by these markers is the target area. Using these markers, we estimate the
homography H (Sec. 2.6) and rotation R (Sec. 2.5). Figure 3 shows the homographic projection
from each view to the canonical square. The canonical square is any square defined by the
engineer.

Fig. 2 Algorithm flow.

(a) (b)

Fig. 1 Our contribution: (a) previous method, which is based on visual hull that is not suited to
estimating planar shapes and (b) the proposed method, which is suited to estimating the concave
shapes that is almost planar.

Fig. 3 Transformation to canonical square.
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A polarization camera captures the azimuth angle ϕ of the target object (Sec. 2.2). We denote
the 90-deg rotation of ϕ as vector a, which would be orthogonal to the surface normal (Sec. 2.3).
Using the vector a and rotation matrix R of the camera parameter, the surface normal n is
calculated using singular value decomposition (SVD) (Sec. 2.4).

Finally, the surface normal is integrated to height field.15

2.2 Polarization

We explain only linear polarization since circular polarization is not related to our method. Light
is an electromagnetic wave, and an electromagnetic wave oscillating in only one direction is said
to have perfectly linear polarization, while an electromagnetic wave oscillating isotropically in
all directions is called unpolarized light. The intermediate state of such light is called partially
polarized light. DOP3–5 is one of the metrics used to represent the polarization state of light.
Its value varies from 0 to 1, with 1 representing perfectly polarized light and 0 representing
unpolarized light.

The maximum light observed while rotating the polarizer is denoted as Imax, and the mini-
mum light is denoted as Imin. In this paper, the polarizer angle at which Imin is observed is called
the azimuth angle ϕ. The surface normal is represented in polar coordinates, where the azimuth
angle is denoted as ϕ and the zenith angle is denoted as θ (Fig. 4). The azimuth angle calculated
from the polarization has 180-deg ambiguity since a linear polarizer has a 180-deg cycle. Thus,
the azimuth angle of the surface normal will be either ϕ or ϕþ 180 deg. The plane consisting of
the incident light and surface normal vectors is called the reflection plane. The reflected light
vector is also coplanar with the reflection plane since the surface is optically smooth. The ori-
entation of the reflection plane is the same as the azimuth angle ϕ and ϕþ 180 deg, which is
defined on a certain xy plane and is defined as an angle between the x axis and the reflection
plane projected on the xy plane. Since we capture images with a camera, the x axis and the y axis
of the “image” coordinates is used.

2.3 Calculating the Surface Normal from Two Viewpoints

Section 2.2 described the relationship between the surface normal and the azimuth angle
obtained from polarization. However, we cannot determine the surface normal uniquely because
only the orientation of the reflection plane including the surface normal is obtained. We must
observe the object from two viewpoints to solve this problem.

Figure 5 represents the situation of our problem. A camera has its coordinate system x axis,
y axis, and z axis. The camera’s z axis is along the optical axis. The reflection plane angle ϕ is the
angle between the x axis of the camera coordinate system and the line caused by the intersection
between the reflection plane and the xy plane.

Fig. 4 Polar coordinates of surface normal.
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We analyze the two reflection plane angles at the same surface point, corresponding to the
known 3-D geometry. Our method assumes that the 3-D geometry of the target object is almost a
plane. The relationship between the surface normal vector and the azimuth angle is shown in
Fig. 6. The relationship between the azimuth angles for each of the cameras, represented as ϕ1

and ϕ2, and the normal vector of the reflection plane, represented as a1 and a2, is shown in
Eq. (1).

EQ-TARGET;temp:intralink-;e001;116;357a1 ¼
0
@ cosðϕ1 þ 90 degÞ

sinðϕ1 þ 90 degÞ
0

1
A; a2 ¼

0
@ cosðϕ2 þ 90 degÞ

sinðϕ2 þ 90 degÞ
0

1
A: (1)

As shown in Fig. 6, the surface normal n is orthogonal to the vectors a1 and a2. After pro-
jecting the vectors a1 and a2 to the world coordinate system, we calculate the surface normal n.
The rotation matrix projecting the world coordinate system to each camera coordinate system
is represented as R1 and R2. The inverse of each of these rotation matrices is its transpose, and
they project back from the camera coordinate system to the world coordinate system. Thus, this
situation is represented as Eq. (2).

EQ-TARGET;temp:intralink-;e002;116;225

0
@ a⊤1R1

a⊤2R2

0⊤

1
A
0
@ nx

ny
nz

1
A ¼

0
@ 0

0

0

1
A: (2)

Namely, the world coordinate of a1 and a2 are R⊤
1 a1 and R⊤

2 a2. Since R⊤
1 a1 and R⊤

2 a2 are
orthogonal to the surface normal n, ðR⊤

1 a1Þ · n ¼ 0 and ðR⊤
2 a2Þ · n ¼ 0 hold. These formulae

can be expressed, in another form, as a⊤1R1n ¼ 0 and a⊤2R2n ¼ 0 [Eq. (2)].

2.4 Calculating the Surface Normal from Multiple Viewpoints

This section explains the estimation process for the surface normal from the azimuth angle
obtained from multiple viewpoints.

Fig. 5 Relationship between the surface normal and the reflection plane when observed from
a single viewpoint.

Camera 1 Camera 2

Reflection
plane 2

Reflection
plane 1Object

surface

a1

a2

n
x1y1

Azimuth angle Azimuth angle
1

2

x2
y2

Fig. 6 Relationship between the surface normal and the reflection plane when observed from
two viewpoints.
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Figure 7 shows the relationship between the surface normal n of the surface point p and the
azimuth angle obtained from K viewpoints. In Fig. 7, ϕk represents the azimuth angle of the
surface point p observed by the camera k ¼ ð1;2; · · · ; KÞ, and ak represents the vector orthogo-
nal to the reflection plane under the coordinate system of the camera k.

The rotation matrix Rk represents the transformation from the world coordinate system to the
local coordinate system of the camera indicated by k. Similar to Eq. (2), Eqs. (3) or (4) holds.

EQ-TARGET;temp:intralink-;e003;116;464

0
BBBB@

a⊤1R1

a⊤2R2

..

.

a⊤KRK

1
CCCCA
0
@ nx

ny
nz

1
A ¼

0
BBBB@

0

0

..

.

0

1
CCCCA; (3)

Or, in an other form,

EQ-TARGET;temp:intralink-;e004;116;370An ¼ 0: (4)

The surface normal n, which satisfies Eq. (4) in the least-squares sense, is estimated using
SVD.28 The K × 3 matrix A is decomposed by SVD as follows:

EQ-TARGET;temp:intralink-;e005;116;315

0
BBBB@

a⊤1R1

a⊤2R2

..

.

a⊤KRK

1
CCCCA ¼ UWVT ¼ U

0
@w1

w2

0

1
A
0
@ v1

v2
v3

1
A: (5)

Here,U is aK × 3 orthogonal matrix,W is a 3 × 3 diagonal matrix with non-negative values, and
V⊤ is a 3 × 3 orthogonal matrix. The diagonal element wi of matrix W is the singular value of
matrix A, and the singular vector corresponding to wi is vi. Owing to the relationship between
the surface normal and the reflection planes, the rank of matrix A is at most 2; thus, one of the
three singular values becomes 0 (see Miyazaki et al.,27 for the proof). The surface normal n is
represented as Eq. (6),28 which is calculated from the singular vector that has the smallest
singular value, namely, the third row of V⊤ in Eq. (5).

EQ-TARGET;temp:intralink-;e006;116;150n ¼ sv⊤3 : (6)

In general, s is an arbitrary scalar coefficient; however, since the surface normal and the singular
vectors are normalized vectors, s would be either þ1 or −1. Whether s is positive or negative is
determined so that the surface normal faces toward the camera. The surface normal estimated
by Eq. (6) is the optimal value that minimizes the squared error of Eq. (4) formulated by

Camera 1

Camera K

Reflection
plane K

Reflection
plane 1

Object
surface

a1

n
x1

y1

1

xK
yK

p

Azimuth angle KAzimuth angle

aK

a2

x2

y2

yK-1

aK-1

Reflection
plane 2

Reflection
plane K-1

Camera 2
Azimuth angle 2

xK-1

K-1Azimuth angle

Camera K-1

Fig. 7 Relationship between the surface normal and the azimuth angle observed from multiple
viewpoints.
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K equations. The input data must be obtained from two or more viewpoints since the rank of
matrix A is 2.

2.5 Camera Parameters

Equation (3) or Eq. (4) calculates the surface normal from the azimuth angle under multiple
viewpoints. To solve Eq. (4), the azimuth angle should be analyzed at corresponding points
among multiple viewpoints. The corresponding points are determined by homography, as shown
in Sec. 2.6. Equation (4) also requires the rotation matrices of each camera, namely, the extrinsic
parameter of each camera should be known.

Our paper represents the projection from 3-D vertex ðX; Y; ZÞ to two-dimensional vertex
ðx; yÞ as Eq. (7).29

EQ-TARGET;temp:intralink-;e007;116;591

 x
y
1

!
∼

 f 0 0

0 f 0

0 0 1

! r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

!0BB@
X
Y
Z
1

1
CCA: (7)

In Eq. (7), we do not describe the camera center parameter ðCx; CyÞ for clarity since we assume
the pinhole camera model. We do not explain the detailed implementation to estimate these
parameters f; t1; t2; t3; r11; r12; · · · ; r33.

2.6 Homography Transform

Homography is a projection from a certain quadrangle to another certain quadrangle represented
under the homographic projection. Homography represents one-to-one correspondence between
two planes without redundancy or lack of information. Therefore, it is natural to use homography
in our work since the target object is almost planar.

The homogeneous coordinate is defined as follows using ðξ1; ξ2; ξ3Þ (ξ3 ≠ 0), where one
element is added to the coordinates ðx 0; y 0Þ.

EQ-TARGET;temp:intralink-;e008;116;377x 0 ¼ ξ1
ξ3

; y 0 ¼ ξ2
ξ3

: (8)

Homographic projection from a certain quadrangle ðx; yÞ to another certain quandrangle
ðx 0; y 0Þ is represented as follows:

EQ-TARGET;temp:intralink-;e009;116;309

 x 0

y 0

1

!
∼

 ξ1
ξ2
ξ3

!
¼
 h11 h12 h13
h21 h22 h23
h31 h32 h33

! x
y
1

!
: (9)

Namely, homographic projection is represented by homography matrix h11; h12; · · · ; h33. Point
ðx; yÞ is projected to the point ðx 0; y 0Þ ¼ ðξ1∕ξ3; ξ2∕ξ3Þ by this homography matrix.

EQ-TARGET;temp:intralink-;e010;116;230x 0 ¼ h11xþ h12yþ h13
h31xþ h32yþ h33

; (10)

EQ-TARGET;temp:intralink-;e011;116;174y 0 ¼ h21xþ h22yþ h23
h31xþ h32yþ h33

: (11)

Figure 8 is an example in which vertices of quadrangle ðx1; y1Þ, ðx2; y2Þ, ðx3; y3Þ, and ðx4; y4Þ
correspond to vertices of quadrangle ðx 0

1; y
0
1Þ, ðx 0

2; y
0
2Þ, ðx 0

3; y
0
3Þ, and ðx 0

4; y
0
4Þ.

Scaling the 3 × 3 homography matrix h11; h12; : : : ; h33 results in the same transformation.
Thus, we fix one element as follows to uniquely determine the homography matrix:

EQ-TARGET;temp:intralink-;e012;116;103h33 ¼ 1: (12)

Substituting the above equation into Eqs. (10) and (11) results in Eqs. (13) and (14).
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EQ-TARGET;temp:intralink-;e014;116;597xh11 þ yh12 þ h13 − xx 0h31 − yx 0h32 ¼ x 0; (13)

EQ-TARGET;temp:intralink-;e014;116;563xh21 þ yh22 þ h23 − xy 0h31 − yy 0h32 ¼ y 0: (14)

Concatenating Eqs. (13) and (14) for four vertices results in Eq. (15).

EQ-TARGET;temp:intralink-;e015;116;540

0
BBBBBBBBBBBB@

x1 y1 1 0 0 0 −x1x 0
1 −y1x 0

1

0 0 0 x1 y1 1 −x1y 0
1 −y1y 0

1

x2 y2 1 0 0 0 −x2x 0
2 −y2x 0

2

0 0 0 x2 y2 1 −x2y 0
2 −y2y 0

2

x3 y3 1 0 0 0 −x3x 0
3 −y3x 0

3

0 0 0 x3 y3 1 −x3y 0
3 −y3y 0

3

x4 y4 1 0 0 0 −x4x 0
4 −y4x 0

4

0 0 0 x4 y4 1 −x4y 0
4 −y4y 0

4

1
CCCCCCCCCCCCA

0
BBBBBBBBBBBB@

h11
h12
h13
h21
h22
h23
h31
h32

1
CCCCCCCCCCCCA

¼

0
BBBBBBBBBBBB@

x 0
1

y 0
1

x 0
2

y 0
2

x 0
3

y 0
3

x 0
4

y 0
4

1
CCCCCCCCCCCCA
: (15)

Since we have eight unknowns ðh11; h12; : : : ; h32Þ and eight equations [eight rows of the leftmost
matrix in Eq. (15)], a closed-form solution exists. Solving this results in the homography matrix
shown below:

EQ-TARGET;temp:intralink-;e016;116;375H ¼
0
@ h11 h12 h13

h21 h22 h23
h31 h32 1

1
A: (16)

Using the homography matrix H [Eq. (16)], the corresponding points between two quadrangles
(Fig. 8) are expressed by Eq. (9). Suppose that the homography of camera 1 is H1 and that of
camera 2 is H2. Figure 3 shows the homographic projection from each view to the canonical
square. The canonical square is any square defined by the engineer. Suppose that the pixel posi-
tion of the canonical square is ðx; yÞ. The corresponding points of camera 1 ðx 0

1; y
0
1Þ and camera 2

ðx 0
2; y

0
2Þ are calculated as follows:

EQ-TARGET;temp:intralink-;e017;116;244

�
x 0
1

y 0
1

�
∼H1

�
x
y

�
;

�
x 0
2

y 0
2

�
∼H2

�
x
y

�
: (17)

Namely, the two points ðx 0
1; y

0
1Þ and ðx 0

2; y
0
2Þ correspond while the point ðx; yÞ acted as a

mediator.

3 Experiment

3.1 Experimental Setup

As shown in Fig. 9, the target object is surrounded by white material. This white environment
acts as a light source and illuminates the target object from every direction. Cheap foaming
polystyrene is used in our experiment, and it is located not strictly but roughly. Once we set
this white enclosure, we do not need to move it like with photometric stereo, which needs

Fig. 8 Homographic projection from a certain quadrangle to another certain quadrangle.
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to move the light sources. The white board is illuminated by ordinary room light which is set in
an ordinary room. Often, the white board is unnecessary since wall, floor, and ceiling act as an
illuminator.18

The camera used is shown in Fig. 10 and Table 1. Since we have only one camera (because
a polarization camera is expensive), we rotate the target object instead of rotating the camera.
Note that observing a target object with multiple cameras and observing the target object rotated
in multiple angles with a single camera are mathematically the same.

3.2 Pseudo-Color Representation of the Result

The following sections show some results of our method. For visualization, the azimuth angle
and the surface normal are represented by pseudo-color. Figures 11(a) and 11(b) show the

Fig. 9 Experimental environment.

Fig. 10 Polarization camera.

Table 1 Specification of the camera.

Manufacturer FluxData Inc., New York

Product name FD-1665P

Sensor Sony ICX414

Resolution 659 × 494

Pixel size 9.9 × 9.9 μm

Configuration 0, 45, 90 linear polarizer

Frame rate 74 fps

Interface IEEE-1394b
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pseudo-color representation of the azimuth angle and the surface normal of an ideal hemisphere,
respectively.

3.3 Result of Ellipsoid

The target object is shown in Fig. 12. We generated the object using a 3D printer, so we can
compare the result with the ground truth, which is the digital data input to the 3D printer. The size
of the square is 10 × 10 cm, the diameter of the long axis of the ellipse is 7.5 cm, the diameter
of the short axis of the ellipse is 2.5 cm, and the maximum deepness of the concave part is
0.625 cm. The unique characteristic of our method is that we can estimate the shape of the
cracks. First, we evaluate the performance of the proposed method. To guarantee the statistical
reliability, we need to estimate the surface normal with wide variety and wide area. This is why
we first measure the concave ellipsoid.

We took one image from each of 15 different directions (Fig. 13). Pseudo-color represen-
tation of the surface normal of our method is shown in Fig. 14 and that of the ground truth is
shown in Fig. 15. Note that our method successfully estimated the shape, which is almost the
same as the true shape. The estimated shape is shown in Figs. 16 and 18(c), while the ground
truth is shown in Figs. 17 and 18(a). The error is calculated as the angle between two surface
normals of the estimated and the ground truth. Error is shown in Fig. 19(b); the average error
was 4.49 deg.

(a) (b)

Fig. 11 Pseudo-color representation of an ideal sphere: (a) azimuth angle and (b) surface normal.

Fig. 12 Target object (ellipsoid).
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3.4 Comparison to Photometric Stereo

To prove the effectiveness of our method, we compare our method with the result of the photo-
metric stereo method.30

Fig. 14 Estimated surface normal (ellipsoid).

Fig. 15 Ground truth of surface normal (ellipsoid).

Fig. 13 Input image (ellipsoid).
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Photometric stereo from 15 lights is applied to the object shown in Fig. 12, and the input
images are shown in Fig. 20. The surface normal of the photometric stereo method is shown in
Fig. 21, and the estimated shape is shown in Figs. 18(b) and 22. Photometric stereo assumes
Lambertian reflection, though the actual reflection is specular reflection, and thus, the shape is
distorted. The error is shown in Fig. 19(a), and the average error was 42.3 deg. Since our error is
4.49 deg, the performance of our method is better.

Fig. 16 Estimated shape (ellipsoid).

Fig. 17 Ground truth of shape (ellipsoid).

(c)

(b)

(a)

Fig. 18 Intersection shape (ellipsoid): (a) ground truth, (b) photometric stereo, and (c) proposed
method.
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3.5 Result of Convex Object

Our method can be applied not only to concave objects but also to convex objects. To prove the
wide applicability of our method, we measure a convex object. The target object is shown in
Fig. 23. The input images of our method are shown in Fig. 24, while those of photometric stereo

(a) (b)

Fig. 19 Estimation error (ellipsoid): (a) photometric stereo and (b) proposed method.

Fig. 20 Input image of photometric stereo (ellipsoid).

Fig. 21 Surface normal of photometric stereo (ellipsoid).

Miyazaki, Furuhashi, and Hiura: Shape estimation of concave specular object. . .

Journal of Electronic Imaging 041006-13 Jul∕Aug 2020 • Vol. 29(4)



Fig. 22 Shape of photometric stereo (ellipsoid).

Fig. 23 Photograph of target object (convex).

Fig. 24 Input data of our method (convex).
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are shown in Fig. 25. The surface normal of the ground truth, the photometric stereo method, and
the proposed method is shown in Figs. 26–28. The shape of the ground truth, the photometric
stereo method, and the proposed method is shown in Figs. 29–31. The cross section of the shape
of the ground truth, the photometric stereo method, and the proposed method is shown in
Figs. 32(a)–32(c). The error of the photometric stereo method and the proposed method is shown
in Figs. 33(a) and 33(b). The average error of the photometric stereo method was 47.0 deg, while
that of the proposed method was 12.9 deg.

3.6 Result of Stripes

To evaluate the performance of our method depending on the width of cracks, three different
concave shapes with different widths are measured. Figure 34 shows the target object, and
Fig. 35 shows the input images. Also, 15 images are taken, one for each direction. The surface
normal of our method is shown in Fig. 36, and that of ground truth is shown in Fig. 37. The
estimated shape is shown in Figs. 38 and 40(b), while ground truth is shown in Figs. 39
and 40(a).

The error map is shown in Fig. 41; the average error was 7.18 deg.

Fig. 25 Input images of photometric stereo (convex).

Fig. 26 Surface normal of ground truth (convex).

Miyazaki, Furuhashi, and Hiura: Shape estimation of concave specular object. . .

Journal of Electronic Imaging 041006-15 Jul∕Aug 2020 • Vol. 29(4)



3.7 Result of Worm

To simulate an acutal situation, we applied our method to a crack that is not shaped in a straight
line. Figs. 42 and 43 show the target object and the input images, respectively, and Figs. 44 and
45 show the estimated surface normal and the estimated shape, respectively.

Fig. 28 Surface normal of proposed method (convex).

Fig. 29 Shape of ground truth (convex).

Fig. 27 Surface normal of photometric stereo (convex).
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3.8 Discussion

As shown in Fig. 41, the narrower the concave part is, the worse the result is. This is because the
light is not illuminated satisfactorily in the narrow concave part. In addition, inter-reflection
becomes strong at the narrow concave part.

Fig. 30 Shape of photometric stereo (convex).

Fig. 31 Shape of proposed method (convex).

(a)

(b)

(c)

Fig. 32 Intersection shape (convex): (a) ground truth, (b) photometric stereo, and (c) proposed
method.
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4 Conclusion

We propose a shape estimation method from polarization images obtained from multiple view-
points. The proposed method computes the surface normal using SVD to minimize the least-
squared error. It can estimate the shapes of the concave part of planar objects that are black and
have high specularity. It is usually difficult to estimate the shape of a planar object with small
details; however, our algorithm fully utilizes the property that the target object is almost planar.

(a) (b)

Fig. 33 Estimation error (convex): (a) photometric stereo and (b) proposed method.

Fig. 34 Target object (stripe).

Fig. 35 Input images (stripe).
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What is interesting in our method is that, even if we assume that the object is planar, the shape of
the concave part is also successfully determined.

The experiments show that our method can estimate the shape of the crack. This property
demonstrates that our method is useful for investigating product inspection in factories, damage

Fig. 36 Estimated surface normal (stripe).

Fig. 37 Ground truth of surface normal (stripe).

Fig. 38 Estimated shape (stripe).
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inspection in architecture, age estimation from skin wrinkles, and so on. For example, factories
want to know the reason for the defect of the product since they want to fix the problem and
decrease the defects. To analyze the reason, the shape of the defects is necessary, and our method
is useful for this purpose.

Fig. 39 Ground truth of shape (stripe).

(a)

(b)

Fig. 40 Intersection shape (stripe): (a) ground truth and (b) estimated shape.

Fig. 41 Error of our method (stripe).

Fig. 42 Target object (worm).
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The disadvantage of our method is that the shape where the light has not reached cannot be
estimated. However, this disadvantage does not apply only to our method but also to any method
in the image processing field since an image cannot be observed if the scene is not illuminated.
Our future work will develop a measurement system that illuminates the target object from any
directions.

Fig. 43 Input images (worm).

Fig. 44 Estimated surface normal (worm).

Fig. 45 Estimated shape (worm).
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