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1 Introduction
Multisensor image fusion is the process of combining two or
more images of a scene to create a single image that is more
informative than any of the input images.1 Image-fusion
technology is employed in numerous applications including
visual interpretation, image drawing, geographical informa-
tion gathering, and military target reconnaissance and sur-
veillance. In particular, research into techniques for image
fusion by contrast reversal in local image regions has impor-
tant theoretical and practical significance.1

Image-fusion methods are classified as spatial- or trans-
form-domain techniques. Spatial-domain methods are sim-
ple, but generally result in images with insufficient detail.
Transform-domain strategies based on image-fusion arith-
metic and wavelet transformations (WTs) represent the cur-
rent state of the art. Wavelets can be used to resolve an
original image into a series of subimages with different spa-
tial resolutions and frequency-domain characteristics. This
representation fully reflects local variations in the original
image. In addition, WTs can affect multiresolution analy-
sis,2,3 perfect refactoring, as well as orthogonal features.4

Image-fusion arithmetic based on WT coefficients can flex-
ibly resolve multidimensional low-frequency and high-
frequency image components. Wavelet transforms can also
realize multisensor image fusion using rules that emphasize
critical features of the scene.5,6

Traditional convolution-basedWTmethods for multireso-
lution analysis have been widely applied to image fusion
for images with a large number of pixels, but the memory
and the computational requirements for these techniques,
and their Fourier-domain equivalents, can be substantial.

Attempts to create more efficient algorithms in the transform
domain have employed the lifting wavelet transform
(LWT).7–9 Also known as the second-generation WT,10 the
LWT is not dependent upon the Fourier transform. Rather,
all operations are carried out in the spatial domain. Image
reconstruction is achieved by simply adjusting the calcula-
tion and sign orders in the decomposition process,11 thereby
reducing two-dimensional image data computation by half,
and the data storage to about 75%.

One important motivation for the use of WTs in image
processing is their ability to segregate low-frequency content
that is critical for interpretation. Traditional image-fusion
methods are based on selecting these significant wavelet
decomposition coefficients.12–14 Even with the effective
separation and processing of low-frequency components
afforded by WT decomposition, such an approach fails to
take into full account the relationships among multiple
input images. The result can be adverse fusion effects.
Significant information can be lost when local area variance
corresponding to pixels across images is small.8,9

Other algorithms use principal component analysis (PCA)
to estimate the wavelet coefficients. This method works well
in low-noise environments, but PCA breaks down when cor-
ruption is severe, even if only very few of the observations
are affected.15 For example, consider the two PCA simula-
tion results shown in Fig. 1. Suppose that the light line in
Fig. 1(a) represents an object in an image, and that the “×”
markers represent samples of that object that have been
corrupted by low-level Gaussian noise. The reconstruction
of the object from the samples using the classical PCA
approach is shown as a heavy line. The results of a similar
experiment are shown in Fig. 1(b) where the PCA recon-
struction is seriously in error as the result of a single
noise outlier in the sampling process.
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To remedy shortcomings in the current methods, this
paper presents an improved image-fusion algorithm based
on the LWT. For low-frequency image components repre-
sented in the LWT decomposition, scale coefficients are
determined through matrix completion16 instead of PCA.
For the high-frequency detail and edge information, the
LWT coefficients are chosen through self-adaptive regional
variance estimation.

2 Matrix Completion and Robust Principal
Component Analysis

2.1 Overview
The matrix completion problem has been the subject of
intense research in recent years. Candés et al.17 verify that
the l0-norm optimization problem is equal to l1-norm
optimization under a restricted isometry property. Candés
and Recht16 demonstrate exact matrix completion using
convex optimization. The “nuclear norm” of the matrix
X ∈ RN×N ,

EQ-TARGET;temp:intralink-;e001;63;330kXk� ¼
X
k

σkðXÞ; (1)

in which σkðXÞ denotes the k’th largest singular value, can be
used to approximate the matrix rank, ρðXÞ. The method
yields a convex minimization problem for which there are
numerous efficient solutions. Candés and Recht16 prove
that if the number, S, of sampled entries obeys

EQ-TARGET;temp:intralink-;e002;63;232S ≥ CN1.2ρðXÞ log N (2)

for some positive constant C, then N × N matrix X can be
perfectly recovered with probability ≈1, by solving a simple
convex optimization problem.

Lin and Ma15 report a fast, scalable algorithm for solving
the robust PCA (RPCA) problem. The method is based on
recovering a low-rank matrix with an unknown fraction of
corrupted entries. The mathematical model for estimating
the low-dimensional subspace is to find a low-rank matrix.
The algorithm proceeds as follows: given a matrix
A ∈ RM×N with ρðAÞ ≪ minðM;NÞ, the rank is the target
dimension of the subspace. The observation matrix D is
modeled as

EQ-TARGET;temp:intralink-;e003;326;549D ¼ PΩðAÞ þ E; (3)

in which PΩð·Þ is a subsampling projection operator and
E represents a matrix of unmodeled perturbations that is
assumed sparse relative to A.

2.2 Matrix Completion
The objective of matrix completion is to recover in the low-
dimensional subspace the truly low-rank matrix A from D,
under the working assumption that E is zero. That is, we seek

EQ-TARGET;temp:intralink-;e004;326;435A ¼ argmin
A 0∈RN×M

kA 0k�; subject to PΩðAÞ ¼ D: (4)

It has been shown that the solution to this convex relaxation
represents an exact recovery of the matrix A under quite gen-
eral conditions.16 Further, the recovery is robust to noise with
small magnitude bounds; that is, when the elements of E are
small and bounded. For example, if E is a white noise matrix
with standard deviation σ, and Frobenius norm kEkF < ϵ,
then the recovered D will be in a small neighborhood of
A with high probability if ϵ2 ≤ ðM þ ffiffiffiffiffiffiffi

8M
p Þσ2.18

2.3 Robust Principal Component Analysis
Conventional PCA is often used to estimate a low-dimen-
sional subspace via the following constrained optimization
problem: In the observation model Eq. (5), minimize the
difference in the matrices A and D by solving

EQ-TARGET;temp:intralink-;e005;326;236min
A;E

kEkF ; subject to ρðAÞ ≤ r; D ¼ Aþ E; (5)

where r ≪ minfM;Ng is the target dimension of the sub-
space, and the use of the Frobenius norm represents an
assumption that the matrix elements are corrupted by addi-
tive i.i.d. Gaussian noise. PCAworks well in practice as long
as the magnitude of noise is small. To use PCA, the singular
value decomposition (SVD) of D is used to project the col-
umns of D onto the subspace spanned by the r principal
left singular vectors of D.

RPCA employs an identity operator PΩð·Þ and sparse
matrix E which differ from those in the matrix completion
and PCA approach. Wright et al.19 and Candés et al.20 have
shown that, for a sufficiently sparse error matrix, a low-rank

Fig. 1 PCA reconstructions fails when data are corrupted by large errors: (a) samples corrupted by
low-level noise and (b) samples include one noise outlier.
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matrix A can be recovered exactly from the observation
matrix D by solving the following convex optimization
problem:

EQ-TARGET;temp:intralink-;e006;63;719A ¼ argmin
A 0

fkA 0k� þ λkEk1g; subject to D ¼ Aþ E;

(6)

where λ is a positive weighting parameter. RPCA has
been used for background modeling, removing shadows
from face images, alignment of the human face, and video
denoising.21,22

In the present paper, RPCA is coupled with the “inexact
augmented Lagrange multiplier” (IALM)15 method to deter-
mine the low-frequency LWT coefficients for fusion of cor-
rupted images. The IALM method is described in Sec. 3.2
after introducing the general procedure.

3 Frequency-Domain Fusion Rules

3.1 Overview
By adopting separate fusion strategies for high- and low-fre-
quency components, the WT can differentially preserve the
critical features that accompany these separate bands. The
procedure that exploits this property is shown in Fig. 2.
The source images are converted to frequency-domain coef-
ficients by the LWT. Frequency-band-dependent fusion rules
are applied to the low- and high-frequency components of
each image. The inverse lifting wavelet transform (ILWT)
is used to reconstruct the fused image.

3.2 Low-Frequency Fusion Based on Inexact
Augmented Lagrange Multiplier

Weighted average coefficients are often employed to fuse
low-frequency wavelet coefficients. This method is effective
when the coefficients of the fused images are similar.
However, when contrast reversal occurs in local regions
of an image, this procedure results in a loss of image detail
in the fused image due to reduced contrast. Further, errone-
ous or missing regions of corrupted images strongly affect
PCA results. These inadequacies of the weighted average
method and PCA provide the motivation for using RPCA
to determine the weighting of low-frequency coefficients.

There is ordinarily little difference in the low-frequency
coefficient values extracted by the LWT from different
images of the same scene. RPCA coefficients are used to re-
present low-frequency content in an attempt to preserve
fidelity and coherency between the subbands. Algorithms

have been developed in this research to solve the RPCA
problem that is the basis for the recovery of the low-rank
matrix A and the estimation of the sparse matrix E from
the observation matrix D. We employ the IALM method
to compute the low-frequency subband coefficients. The
method is sketched as follows.

Let Γ ¼ fIk ∈ RN1×N2gKk¼1 denote a set of corrupted
images from K sensors, and let Γ̃ ¼ fĨk ∈ RðN1×N2Þ∕4LgKk¼1

be the corresponding set of low-frequency subimages com-
puted using the LWT. L is the number of LWT layers.
For simplicity, we assume square images so that N1∕4L ¼
N2∕4L¼defN. Stack all N columns of each Ĩk into a single vec-
tor of dimension N2, then use these vectors as K columns of
a matrix ĨD. After normalizing the data, we denote by ilk
the ðl; kÞ element of ĨD,
EQ-TARGET;temp:intralink-;e007;326;577

ĨD ¼

0
BBBB@

i11 i12: : : i1K
i21

..

.

i22 · · ·

..

. . .
.

i2K

..

.

iN21 iN22 · · · iN2K

1
CCCCA: (7)

The cumulative low-frequency subimage matrix is modeled
similarly to Eq. (3),

EQ-TARGET;temp:intralink-;e008;326;474ĨD ¼ ĨA þ ĨE; (8)

in which ĨA ∈ RN2×K denotes the noise-free and integrated
low-frequency subimage sequence matrix, and ĨE ∈ RN2×K

denotes the sparse error matrix from which high-frequency
content has been attenuated by the selection of LWT coef-
ficients. The low-frequency LWT coefficients are similar
across multiple subimages of the same scene. According to
the model, ĨA is noise-free and will ideally, therefore, consist
of K identical columns. Accordingly, ĨA will be of low rank
as required by the matrix completion procedure. Thus, ĨA can
be estimated via matrix completion and RPCA by solving

EQ-TARGET;temp:intralink-;e009;326;325min
ĨA;ĨE

kĨAk� þ λkPΩðĨEÞk1 subject to ĨA þ ĨE ¼ ĨD; (9)

where the augmented Lagrange multiplier is
EQ-TARGET;temp:intralink-;e010;326;274

LðĨA; ĨE;Y; μÞ ¼ kĨAk� þ λkPΩðĨEÞk1
þ TrfY; ĨD − ĨA − ĨEg þ

μ

2
kĨD − ĨA − ĨEk2F : (10)

In this equation, λ is an estimated positive weighting param-
eter representing the proportion of the sparse matrix ĨE in the
low-rank matrix ĨA. The default value for this fraction is
1∕N. μ is a positive tuning parameter balancing accuracy
and computational effort. TrfA;Bg is the trace of the product
ATB and Y is the iterated Lagrange multiplier.

A flowchart of the IALM algorithm is shown in Fig. 3.
Definitions of the notation used in the flowchart appear in
Table 1. The algorithm is recursive with superscript j indi-

cating the iteration number. The quantity Ĩðj
0Þ

A ∈ RN2×K is the
recovered low-rank matrix for some sufficiently large j, say

j 0. A reasonable strategy for transforming the resulting Ĩðj
0Þ

A
to the final low-frequency subimage is to unwrap its firstFig. 2 Image fusion processing based on wavelet transform.
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column to form the original N × N image structure. The final
low-frequency subimage is denoted Ĩ∂.

In this process, Yð0Þ is initialized to ĨD∕maxðkĨDk2;
kĨDk∞Þ; and Ĩð0ÞE is initialized to zero matrix as the same
size of ĨD; λ is initialized to 1∕

ffiffiffiffi
m

p
where m is the column

size of ĨD; tolerance for stopping criterion τ is initialized to
1 × 10−7; and j is set to zero for loop computation.

3.3 High-Frequency Fusion Based on Self-Adapting
Regional Variance Estimation

Processing of high-frequency wavelet coefficients has a
direct effect on salient details which affect the overall clarity
of the image. As the variance of a subimage characterizes the
degree of gray level change in a corresponding image region,
the variance is a key indicator in processing of high-fre-
quency components. In addition, there is generally a strong
correlation among adjacent pixels in a local area, so that
there is significant amount of shared information among
neighboring pixels. When variances in corresponding local

regions across subimages vary widely, a high-frequency
fusion rule for selecting the source image of greatest variance
has been shown to be effective at preserving image fea-
tures.8,9 However, if the local variances of two source images
are similar, this method can result in the loss of information
by discarding subtle variations among different subimages.
An empirical procedure has been developed in which a
thresholding procedure is used to segregate local areas
that have sufficiently large variance. This allows the entire
set to be represented by the single maximum-variance set
member. The selection of this difference threshold, ξ, is dis-
cussed below.

Let us return to the original set of images Γ ¼
fIk ∈ RN1×N2gKk¼1. Denote by Ikðx; yÞ the gray-scale value
at pixel ðx; yÞ in the k’th image. Also let Vk ∈ RN1×N2 denote
a matrix associated with image Ik in which matrix element
Vkðx; yÞ contains the normalized sample variance of the 3 ×
3 window of pixels centered on pixel ðx; yÞ. The normalized
sample variance means that all variance values are in the
interval [0,1]. Without loss of generality, we select images
I1 and I2 with which to describe the steps of the high-
frequency fusion algorithm:

1. Compute normalized sample variance matrices V1 and
V2. Then Vkðx; yÞ denotes the normalized variance
value of pixel ðx; yÞ in image Ik for k ¼ 1, 2.

2. Implement the LWT over L ¼ 2 layers against I1, I2,
V1, and V2. Multiresolution structures for each matrix
are obtained: Iθ1, I

θ
2, V

θ
1, and Vθ

2, in which the super-
script θ takes one of three designators of direction—
horizontal (h), vertical (v) or diagonal (d)—associated
with structure matrix

EQ-TARGET;temp:intralink-;e011;326;127Δθ
Vðx; yÞ ¼ Vθ

1ðx; yÞ − Vθ
2ðx; yÞ: (11)

Let ΔVðx; yÞ denote the sum of the differences in
the horizontal, vertical, and diagonal directions

Fig. 3 Flowchart of operations in the IALM algorithm.

Table 1 Notation used in the IALM∂ algorithm.

Notation Definition

ĨD Low-frequency subimage observation matrix

ĨðjÞE Error (sparse) matrix, iteration j

ĨðjÞA Recovered low-rank subimage matrix, iteration j

YðjÞ Lagrange multiplier matrix, iteration j

τ Mean-squared-error tolerance bound

∇ðXÞ Singular value decomposition (SVD) of general matrix X

U and V Customary notation for orthogonal matrices of SVD

S Customary notation for diagonal matrix of singular values

Sε½x � Soft-shrinkage operator applied to scalar x15

Sε½x �¼def
( x − ε; x > ε
x þ ε; x < −ε
0; otherwise

; x ∈ R; ε > 0
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EQ-TARGET;temp:intralink-;e013;63;748

ΔVðx; yÞ ¼ ½Vh
1ðx; yÞ − Vh

2ðx; yÞ� þ ½Vv
1ðx; yÞ

− Vv
2ðx; yÞ� þ ½Vd

1ðx; yÞ − Vd
2ðx; yÞ�; (12)

in which Vθ
kðx; yÞ indicates the normalized variance

of the k’th image in direction θ.

3. Compare the threshold value and jΔVðx; yÞj. If
jΔVðx; yÞj ≥ ξ take the pixel value with bigger vari-
ance as the wavelet coefficient after fusion; otherwise
use a weighted sum to compute the wavelet coeffi-
cient, Dθ

F is the multiresolution structure after fusion,
namely

EQ-TARGET;temp:intralink-;e013;63;674

Dθ
Fðx; yÞ ¼

8><
>:

Iθ1ðx; yÞ; when ΔVðx; yÞ > 0 and jΔVðx; yÞj ≥ ξ;

Iθ2ðx; yÞ: when ΔVðx; yÞ < 0 and jΔVðx; yÞj ≥ ξ;

Vθ
1ðx; yÞIθ1ðx; yÞ þ Vθ

2ðx; yÞIθ2ðx; yÞ; when jΔVðx; yÞj < ξ:

(13)

In this study, the value of ξ is set to 0.8. This
means that when the normalized variance of the
pixel ðx; yÞ in one image is much greater than
another, the source image of greater variance is
selected. Otherwise, the coefficient is obtained by
averaging as in Eq. (13). This fusion rule for high-fre-
quency subimages not only results in the retention of
details, but it also prevents the loss of image informa-
tion caused by redundant data. It ensures the consis-
tency of the fused image.

In summary, IALM is used to determine the low-fre-
quency component to be fused, and self-adapting regional
variance is employed to estimate the high-frequency contri-
bution. The fused wavelet coefficients are combined by
ILWT to create the final result.

4 Experimental Results and Analysis

4.1 Comparison of Robust Principal Component
Analysis Algorithms

To validate the new procedure, four groups of experiments
results are reported. The objective of the first is to compare
the performance of RPCA algorithms with that of IALM.
The results are shown in Table 2. Two mainstream algo-
rithms are compared—singular value thresholding (SVT),
accelerated proximal gradient with IALM.

In this table, the input dataset named observation matrixD
of Eq. (6) is of dimension N × N. It has some random miss-
ing or broken pixels. For fair comparison, we set r, the rank
of A, to 0.05 N, and define the normalized mean squared
error (NMSE) as

EQ-TARGET;temp:intralink-;e014;63;252NMSE ¼ kD − A − EkF
kDkF

: (14)

In Table 2, the column labeled #SVD indicates the num-
ber of iterations. The “times” column displays the number of
seconds to run the algorithm. The oversampling rate ðp∕drÞ
is six, implying ∼60% downsampling of the data appearing
in the observation matrix, in which, dr indicates the number
of degrees of freedom in the rank r matrices:
dr ¼ rð2N − rÞ. p elements from A are then sampled uni-
formly to form the known samples in D.16

Among the three algorithms, IALM exhibits superiority
performance in all three measures. The results indicate
that time increases proportionately with N2. Note, however,
that #SVD is not dependent upon N.

4.2 Fusion of Clean Images
For convenience, we will refer to the new algorithm as
IALM∂. The next two groups of experiments involve
processing of left-focus–right-focus images and visible-
light–infrared-light images, comparing different image-fusion
algorithms with IALM∂. The source images are not corrupted
by noise or errors. The spline 5∕3 wavelet basis23 was

Table 2 Comparison of RPCA algorithms.

N Algorithm r NMSE #SVD Time (s)

500 SVT 25 1.35 × 10−4 78 13.72

500 APG 25 2.33×10−5 56 10.34

500 IALM 25 4.73×10−7 34 3.32

600 SVT 30 1.27×10−4 77 19.02

600 APG 30 2.11×10−5 58 16.92

600 IALM 30 4.61×10−7 34 5.64

700 SVT 35 1.36×10−4 74 24.77

700 APG 35 2.25×10−5 58 26.25

700 IALM 35 4.62×10−7 34 8.41

800 SVT 40 1.26×10−4 75 33.95

800 APG 40 2.14×10−5 59 42.14

800 IALM 40 4.30×10−7 34 12.09

900 SVT 45 1.27×10−4 75 42.52

900 APG 45 2.03×10−5 60 59.24

900 IALM 45 4.45×10−7 34 16.78

1000 SVT 50 1.25×10−4 73 52.65

1000 APG 50 2.16×10−5 60 72.26

1000 IALM 50 4.45×10−7 34 22.54

2000 SVT 100 1.30×10−4 71 257.17

2000 APG 100 2.05×10−4 64 387.42

2000 IALM 100 4.39×10−7 34 154.43
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selected for the LWT process. Through factorization, the
equivalent lifting wavelet was obtained. The experimental
results are shown in Figs. 4 and 5.

The first group of source images involves those with
eccentric focus, the second contains images of visible con-
trasting and infrared light. Fig. 4(a) shows a left-focused
source image, whereas Fig. 4(b) is right-focused; Fig. 5(a)
is a visible-light source image, while Fig. 5(b) uses an infra-
red source; in Figs. 4(c)–4(f) and 5(c)–5(f) are, respectively,
the fusion results by the weighted average over low
frequencies and the absolute value maximum method over
high frequencies (WA_AM), weighted average over low
frequencies and the local area maximum method over
high frequencies (WA_AM), improved pulse-coupled
neural networks (PCNN) method,24,25 and PCA-weighted
over low frequencies, the self-adaptive regional variance

estimation method over high frequencies (PCA∂), and the
algorithm developed in this paper (IALM∂).

The processed images empirically suggest that a clearer
fused image is obtained through (IALM∂). More detailed
information is evident, e.g., in Figs. 4(e) and 4(f) in which
the image information on the left edge of the large alarm
clock is apparently richer than the same feature in the other
three fused images. This also means that algorithm IALM∂ is
equally effective to algorithm PCA∂, even though the algo-
rithm IALM∂ has more detailed information (Table 2).
Furthermore, the new algorithm achieves a fusion result with
finer detail. For example, the barbed wire in Fig. 5(d) is
more clearly visible than the same feature in (c). In Fig. 5,
the person in 5(c) is better defined than in 5(d), while in 5(e)
and 5(f), both the barbed wire and the person, and even
the smoke in the upper-right corner of the image, are easier

Fig. 4 Multifocus image-fusion experiment: (a) left-focus image, (b) right-focus image, (c) WA_LM,
(d) PCNN, (e) PCA∂, and (f) IALM∂.

Fig. 5 Visible light and infrared image-fusion experiment: (a) visible-light image, (b) infrared image,
(c) WA_LM, (d) PCNN, (e) PCA∂, and (f) IALM∂.
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to identify than in the others. This enhanced clarity admits
more effective subsequent processing.

The following objective criteria were evaluated:

1. The “mutual information” (MI) is a measure of statis-
tical dependence that can be interpreted as the amount
of information transmitted from the source images to
the fused image.26 To assess the MI between source
image I1 and the fused image, say IF, we use the
estimator

EQ-TARGET;temp:intralink-;e015;63;644M1;F ¼
X
l1;lF

h1;Fðl1; lFÞ log
h1;Fðl1; lFÞ
h1ðl1ÞhFðlFÞ

; (15)

where h1ðl1Þ and hFðlFÞ represent the normalized
histogram of source image I1 and fused image IF,
respectively. l1 and lF each take integers indicating
one of 28 gray levels f0;1; : : : ; 255g. h1;Fðl1; lFÞ
denote the jointly normalized histogram of I1 and
image IF. Similarly,M2;F denotes the mutual informa-
tion between image I2 and the fused image IF. The MI
between the source images I1 and I2 and the fused
image IF is

EQ-TARGET;temp:intralink-;e016;63;499M1;2;F ¼ M1;F þM2;F: (16)

A larger MI value indicates that the fused image
includes more information from the original images.

2. The “average gradient” (AG), or “clarity,” reflects the
preservation of gray level changes in the image. With
dimensions N1 ¼ N2 ¼ N, larger values of AG imply
greater clarity and edge preservation. Gray-level dif-
ferentials are important, e.g., in texture rendering.
The AG is defined as

EQ-TARGET;temp:intralink-;e017;63;377∇ḡ ¼ 1

N2

XN−1

x¼1

XN−1

y¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ΔI2xðx; yÞ þ ΔI2yðx; yÞ�∕2

q
; (17)

where ΔIxðx;yÞ¼ Iðxþ1;yÞ− Iðx;yÞ and ΔIyðx;yÞ¼
Iðx;yþ1Þ−Iðx;yÞ are the gray value differentials in
the coordinate x and y directions, respectively.

3. The “correlation coefficient” (CC) is used to compare
two images of the same object (or scene). CC, which
measures the correlation (degree of linear coherence)
between the original and the fused images, is defined
as

EQ-TARGET;temp:intralink-;e018;63;237CF;1 ¼
P

x;y½ðIFðx; yÞ − ĪFÞ�½ðI1ðx; yÞ − Ī1Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x;y
½IFðx; yÞ − ĪF�2

P
x;y
½I1ðx; yÞ − Ī1�2

r ; (18)

where IFðx; yÞ and I1ðx; yÞ are the gray levels at pixel
ðx; yÞ in the fused and original images, and ĪF and Ī1
denote the average gray levels in the two images.

4. The “degree of distortion” (DD), a direct indicator of
image fidelity, is defined as

EQ-TARGET;temp:intralink-;e019;63;120DF;1 ¼
1

N1 × N2

XN1

x¼1

XN2

y¼1

jIFðx; yÞ − I1ðx; yÞj; (19)

in which IFðx; yÞ and I1ðx; yÞ are as defined above.

5. The QAB∕F metric quantifies the amount of edge infor-
mation transferred from two source images IA and IB
to a fused image IF.

26 It is calculated as

EQ-TARGET;temp:intralink-;e020;326;719QAB∕F

¼
PN1

x¼1

PN2

y¼1½QAFðx;yÞwAðx;yÞþQBFðx;yÞwBðx;yÞ�PN1

x¼1

PN2

y¼1½wAðx;yÞþwBðx;yÞ� ;

(20)

where each image is of size N1 × N2. α and β re-
present, respectively, the edge strength and orienta-
tion. QAFðx; yÞ is the product of QAF

α ðx; yÞ and
QAF

β ðx; yÞ which represent, respectively, how well
the edge strength and orientation values of a pixel
are represented in the fused image IF. Similarly,
QBFðx; yÞ is computed as the product of QBF

α ðx; yÞ
and QBF

β ðx; yÞ which represent, respectively, how
well the edge strength and orientation values of a
pixel ðx; yÞ in I2 are represented in the fused image
IF. wAðx; yÞ and wBðx; yÞ, respectively, denote the pro-
portion of QAFðx; yÞ and QBFðx; yÞ, which reflect the
importance of QAFðx; yÞ and QBFðx; yÞ. The dynamic
range of QAB∕F is between [0 1], and it should be as
close to 1 as possible.

6. The “peak signal-to-noise ratio” (PSNR) is an expres-
sion for the ratio between the maximum possible
power of a signal and the power of distorting noise
that affects the quality of its representation. This objec-
tive metric is used to compare the effectiveness of
algorithms by measuring the proximity of the fused
image and the original image. The PSNR is computed
as

EQ-TARGET;temp:intralink-;e021;326;373PSNR ¼ 10 lg
ðL − 1Þ2
RMSE2

; (21)

where RMSE denotes the root mean square error
between the reference and fused images. L ¼ 256 is
the number of gray levels used in representing an
image. A larger PSNR value indicates a better fusion
result.

Tables 3 and 4 report the objective performance evalu-
ation measures for the four fusion algorithms.

Table 3 Experimental objective evaluation measures of Fig. 4.

Evaluation
indicator WA_LM PCNN PCA∂ IALM∂

MI 6.1604 7.0814 7.2788 7.5191

AG 4.2067 6.8089 6.8096 6.8089

CC 0.9768 0.9749 0.9836 0.9927

DD 3.9762 3.9089 3.6406 3.5743

QAB∕F 0.6133 0.6897 0.6987 0.6929

PSNR 22.6195 28.1095 28.1270 31.3846
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Relative to the other algorithms, IALM∂ obtains the larg-
est MI and AG for the fused images, suggesting that this
algorithm can provide fused images with higher information
content and better clarity. The objective indicators of fidelity
to the source image also favor the IALM and self-adaptive
regional variance estimation algorithm performance.

4.3 Fusion of Corrupted Images
To assess whether IALM∂ is robust to missing data and
image corruption, we continue to use clean, multifocus

clock images for processing. At a 0.15 error rate, 15% of
the pixels of the original image are corrupted, and an addi-
tional 15% are missing (gray-level values set to zero). This
implies an effective data corruption rate or 30%. The results
of the test of the four algorithms are shown in Fig. 6.
Figures 6(a) and 6(b) show, respectively, Fig. 4(a) with errors
and Fig. 4(b) with errors. Figure 6(c) shows the result of
using PCA∂ without a denoising filter, while Fig. 6(d),
labeled PCA∂;F , shows the result of using PCA∂ with an
adaptive median filter. The result of using PCNN with an
adaptive median filter is labeled PCNNF and appears in
Fig. 6(e). To achieve this outcome, we use the adaptive median
filtering strategy proposed by Chen and Wu27 to identify pix-
els corrupted by impulsive noise and replace each damaged
pixel by the median of its neighborhood. The adaptive median
filter can employ varying window sizes to accommodate dif-
ferent noise conditions and to reduce distortions like excessive
thinning or thickening of object boundaries. Figure 6(f) shows
results using IALM∂ without denoising. The clarity of result
6(f) relative to those in 6(c), 6(d), and 6(e) is quite apparent.
The empirical image quality tracks the improvement in
PSNR as reported in the captions. Figures 6(g) and 6(h) show
400% blow ups of portions of 6(e) and 6(f).

These results demonstrate the ability of IALM∂ to recover
the missing or erroneous data, while preserving image detail
in both corrupted and clean images.

Table 4 Evaluation comparison of Fig. 5.

Evaluation
indicator WA_LM PCNN PCA∂ IALM∂

MI 2.7595 3.7565 3.8953 3.8938

AG 6.8556 7.8666 7.9206 8.1982

CC 0.7873 0.8729 0.8808 0.8976

DD 17.1008 11.0016 10.9259 10.2100

QAB∕F 0.5988 0.6978 0.6798 0.7548

PSNR 20.4271 24.3396 25.1234 25.3540

Fig. 6 Multifocus corrupted image-fusion experiment: (a) Fig. 4(a) with errors; (b) Fig. 4(b) with errors;
(c) PCA∂ (PSNR ¼ 17.82); (d) PCA∂;F (PSNR ¼ 19.37) (e) PCNNF (PSNR ¼ 20.76); (f) IALM∂
(PSNR ¼ 30.33); (g) zoom out 400% of (e); and (h) zoom out 400% of (f).
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5 Conclusions
Traditional convolution-based wavelet transform processing
for image fusion has shortcomings including large memory
requirements and high computational complexity. The
approach to fusion taken in this research uses different fusion
rules for low-frequency and high-frequency decomposition
components represented on a lifting wavelet basis set.
Low-frequency components are characterized by the matrix
completion and RPCA methods: IALM, whereas the high-
frequency components critical for image details are repre-
sented by taking into account the variance differences
among proximal neighborhoods. Furthermore, strong corre-
lation between pixels in a local area is captured by a self-
adaptive regional variance assessment.

Experimental results show that the new algorithm not
only improves the amount of information and the correlation
between the fused and source images, but also reduces the
level of distortion. Significant clarity improvement relative to
state-of-the-art methods is also demonstrated for corrupted
images.
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