Journal of

Electronic Imaging

SPIEDigitalLibrary.org/jei

Real-time camera tracking using a
particle filter combined with
unscented Kalman filters

Seok-Han Lee




Journal of Electronic Imaging 23(1), 013029 (Jan—Feb 2014)

Real-time camera tracking using a particle filter
combined with unscented Kalman filters

Seok-Han Lee*

Jeonju University, Department of Information and Communication Engineering, 303, Chunjam-Ro, Wansan-Gu, Jeonju,

Jeollabuk-Do, 156-759, Korea

Abstract. Real-time camera tracking is steadily gaining importance due to the drive from various applications,
such as augmented reality, three-dimensional structure estimation/modeling, and mobile computing environ-
ment. However, tracking a monocular camera in an unknown environment is not a trivial work. We describe
a real-time camera tracking framework designed to track a monocular camera in a workspace. In particular,
we focus on integration of a bundle of nonlinear filters to achieve robust camera tracking and scalable feature
mapping, which can extend to larger environment. The basic idea of the proposed framework is that a particle
filter—based camera tracking is connected to independent feature tracking filters, which have fixed-state dimen-
sion. In addition, every estimate required for template prediction is obtained from the independent feature estima-
tors so that the template prediction can be maintained without additional framework for the template state
estimation. We split the camera tracking and feature mapping into two separate tasks, and they are handled
in two parallel processes. We demonstrate the effectiveness of the proposed approach within a desktop envi-
ronment in real time. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution
or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JEI

.23.1.013029]
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1 Introduction

Typically, vision-based augmented reality (AR) systems
operate on the basis of prior knowledge of the environment.
This could be a three-dimensional (3-D) model or a fiducial
marker, which is known to be present in the scene. The appli-
cation then allows a user to interact with this environment
based on the prior information on this model. If the
known model or fiducial is accurate, registration can be per-
formed directly from it, and this is the conventional method
of vision-based AR system. Quite often, however, accurate
information is not available from the scene, and this limits
range and accuracy of registration. Therefore, there have
been considerable research efforts for the techniques known
as real-time camera tracking, in which the system attempts to
add unknown features to its feature map, and these then pro-
vide registration even when the original reference map is out
of visible range. Typically, vision-based tracking systems
operate on the basis of a monocular camera. One problem
of the single camera-based systems is that one view alone
does not provide enough information for complete 3-D
reconstruction because a single camera produces only two-
dimensional (2-D) measurements of 3-D scene structure. In
this paper, we describe a real-time camera tracking frame-
work designed to track a monocular camera in an AR work-
space. In fact, the use of a projective camera as a primary
sensor introduces additional difficulties to the problem.
Tracking a hand-held camera is more difficult than tracking
a specific device, such as a robot. In case of a robot, it usually
receives a sort of odometry data and can be driven at arbi-
trarily slow and controllable speed.! Acquisition of landmark
position is also easier than that of monocular visual tracking
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because, in a robot, actual positions of landmarks are
received directly from a series of specific sensors. This is
not the case for monocular visual tracking. A single camera
is a bearing-only sensor and it provides only 2-D measure-
ments of 3-D scene space. In this paper, we focus on inte-
gration of a bundle of nonlinear filters to achieve robust
camera tracking and scalable feature mapping, which can
extend to larger environment. The main contribution of the
proposed work is that a particle filter—based camera tracker is
combined with independent feature estimators, which have
fixed-state dimension. In addition, we split camera tracking
and feature estimation into two separate tasks, which are
handled in two parallel working pipelines. Therefore, the
camera pose estimation and feature tracking are handled
independently, so the camera tracking is less influenced by
increase of the number of features. An additional feature of
our system is that it employs predictive template warping in
order to minimize problems caused by straightforward tem-
plate matching, which is quite vulnerable to unpredictable
camera motions. This approach may seem to be similar to
the method introduced in Refs. 2 and 3. However, our
method is quite different in that every estimate required
for the predictive template warping can be obtained directly
from the independent feature estimators, so that the template
prediction is maintained without additional framework for
template state estimation.

2 Related Works

The use of a monocular camera introduces additional dif-
ficulties, and therefore, the filtering techniques that
enable camera state acquisition from prediction-correction
model are very important to the problem. The majority of
conventional approaches that support the prediction-correc-
tion model have been based on variants of the Kalman
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filter.>™ In particular, the extended Kalman filter (EKF) lin-
earizes the state model of system and represents all distribu-
tions as Gaussians. So a plurality of tracking systems is
achieved on the basis of the EKF framework. In contrast
to conventional structure-from-motion (SFM) techniques,
which rely on global nonlinear optimization, recursive esti-
mation methods permit online operation, which is highly
desirable for a real-time camera tracking system. For exam-
ple, Davison shows the feasibility of real-time simultaneous
localization and mapping with a single camera in Ref. 2,
using the EKF estimation framework. His system takes a
top-down Bayesian estimation approach, searching for fea-
tures in image regions constrained by state uncertainty
instead of performing bottom-up image processing and fea-
ture matching. Efforts to improve the robustness of camera
tracking have recently been made by Pupilli and Calway,’
who replace typical EKF framework with particle filtering,
which is quite robust to erratic camera motions. However, the
goal of the work is on robust camera tracking, and new fea-
ture mapping is not discussed. In Refs. 6 and 7, FastSLAM-
style particle filters for the real-time camera tracking are
presented. The camera tracking is performed by particle fil-
tering, while feature mapping is achieved by a series of
estimators that are included in each particle. FastSLAM
framework has the advantage of scalability, although the
computational cost may prohibit real-time operation given
a large number of particle sets and feature points. Our
approach is different in that a single map is maintained
by independent unscented Kalman filters (UKFs) while
the camera pose is estimated by a set of particle cloud.
An alternative approach is taken by Chekhlov et al.,*’
who employ a more robust image descriptor instead of con-
ventional correlation-based scheme, which may reduce the
probabilities of outlier measurements. This allows the system
to operate with large regions for feature search without com-
promising robustness. Camera tracking based on batch

Feature #3

techniques has previously been introduced by Genc et al.
and Subbarao et al.'>!! A specific tracking system or fiducial
markers are used in an initialization phase to estimate new
feature points, which can later be employed for the tracking.
In particular, Ref. 10 uses conventional bundle adjustment
technique in the training phase and presents decent tracking
performance when tracking the estimated reference features.
However, no attempt is made to extend the feature map after
the initialization stage. Reference 11 presents an algorithm
for more robust and accurate tracking; however, this method
might cause a severe performance degradation, which may
lead the system operation to unusable levels. Moreover, it
is not clear if the feature map can grow after the initialization.
References 12 and 13 present a framework for real-time
degrees of freedom (6DOF) camera pose estimation based
on natural features in an arbitrary scene. Crucially, the sys-
tems are operated on the basis of precaptured reference
images. Feature points in the current image frame are
matched to two spatially separated reference images. In
Ref. 12, this wide baseline correspondence problem is solved
by computing a global homography between current and pre-
vious image frame and employ local affine assumption
between previous frame and reference images. Although
this system is claimed to be more robust and accurate,
any discussion on the scalability of feature map or erratic
camera motion is not given. In Ref. 14, a particle filtering
framework for real-time camera pose estimation is presented.
In particular, the authors propose an approach for real-time
points and line tracking to estimate camera pose, and dem-
onstrate how to use the 3-D line constraint in order to con-
struct likelihood function for particle filtering. The camera’s
pose is assumed to undertake the first-order random-walk
with uniform uncertainty in the state space. This system
can track camera accurately under various situations, such
as severe occlusion and nonsmooth camera motion.
However, this work focuses only on robust camera tracking,
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Fig. 1 Block diagram of the proposed framework. A particle filter is connected to independent filters. The
camera tracking is achieved by the particle filter, while the feature tracking is performed by independent
feature estimators, which have a fixed dimension.
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and any discussion on new feature mapping and scalability
of feature mapping is not presented. Reference 15
proposes a camera tracking method for multiview sequential
images, such as aerial video stream, which exploits the con-
straints imposed by the path of camera motion to allow
detection and correction of inaccuracies in the feature
tracking and structure computation processes. The camera
path is used as a source of strong constraints in feature
tracking, such that tracks that do not meet the constraints
can be corrected, resulting in an improved scene structure.
This approach improves the accuracy of feature tracking
and, therefore, allows quite robust 3-D reconstruction. But
this method is basically for off-line SFM framework, so any
discussion on real-time operation is not given. Reference 16
illustrates a system for real-time camera tracking and
reconstruction, which relies not on feature extraction tech-
nique but dense, every pixel methods. This system builds
a set of keyframes from camera image stream and estimates
detailed textured depth maps at selected keyframes to pro-
duce a surface patchwork that has millions of vertices. In
order to improve the quality of the final output, the system
uses the hundreds of images available in a video stream. This
system achieves real-time performance using commodity
GPU hardware and produces an impressive volumetric
depth map reconstruction of a scene with high accuracy.
Reference 17 proposes a technique to extend 3-D map-build-
ing to allow one or more cameras to work in several maps,
separately or simultaneously. In fact, this allows spatially
separated AR work spaces to be constructed and used with-
out user’s intervention. In order to achieve this, it exploits the
uniform and dense spread of keyframes through a map. A
descriptor to detect each keyframe is built by conventional
image subsampling technique and Gaussian blur. And cur-
rent camera image is compared to those from keyframes
in order to set the camera’s pose to that of the keyframe.
In order to resolve the multiple map problem, the relocaliza-
tion mechanism cross-correlates with all of the keyframes
from all maps. In addition to the above approaches, several
research efforts have been devoted to make use of sensor
fusion and more diverse visual features in Refs. 18 and 19.

Recently, the advent of RGB-D sensors like the Microsoft
Kinect opened new possibilities for approaches on dense 3-D
reconstruction as they directly output dense depth informa-
tion. The KinectFusion algorithm introduced by Newcombe
et al.”’ was one of the first systems to produce a volumetric
reconstruction of a scene in real time with very high accu-
racy. In particular, they have presented impressive results by
using signed distance functions to represent the scene geom-
etry and the iterated closest point algorithm for camera
tracking. References 21 and 22 present extended versions
of the original KinectFusion algorithm, which aim to
boost the performance and accuracy of the original algo-
rithm. These methods combine diverse odometry estimation
algorithms in order to increase the robustness and accuracy
of camera tracking across a variety of environments, from
desktop environments to extended scale paths. By virtue
of depth information directly received from the sensor,
these techniques can achieve very accurate camera tracking
and high-quality volumetric reconstruction. Efforts to
improve the robustness of relocalization, which is known
as loop-closure problem, have recently been made by
Martinez-Carranza and Mayol-Cuevas.>* Binary descriptors
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combined with a hashing technique are employed, and the
depth information available from an RGB-D sensor is used
to assist 3-D geometric validation stage in the selection of
good feature sample matches. In fact, the loop-closure prob-
lem is one of the main challenges in robots equipped with
vision sensor. The authors show that depth information
from the RGB-D camera can significantly improve the accu-
racy. Reference 24 illustrates how the RGB-D cameras can
be used specifically for building dense 3-D maps of indoor
environments. The authors employ an optimization algo-
rithm combining visual features and shape-based alignment,
and present a full 3-D mapping system. In order to achieve

Algorithm 1 Particle filtering for camera pose estimation

Data at time step k: S;_;, V¢, Qc, /i
Output: S, (new particle sef)
{Step 1. resample particle set}
SR | =Resample(S;_+);
{Step 2. apply motion model to all particles}
S, =oM =g;
for (x7 , S )
x? =f (x]_,, Ve, Qc); // apply motion model
add x] to S;
add feature projections m7 = P(x}) - z,to M_;
end for
{Step 3. compute feature measurements}
compute search regions based on M;
for (z, € 2)
rm(Zm) = T(Zp) * ki // NCC & template matching of z,,
Yim = Threshold < ry ,(z,); // obtain measurements
end for
{Step 4. compute particle weights & form S}
S, =g;
for (x] € S;)
wi = p(yilx{, 2);
build (x}, wf) & add it to Sy;
end for

{Step 5. normalize the particle weights of S}

Normalize(S,);
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Fig. 2 Simulation of the inverse depth estimation. Red ellipses represent depth uncertainties of the
Gaussian error of projection rays: (a) Simulation condition for two-dimensional point estimation,
(b) point reconstruction modeled with xyz coordinate, and (c) with inverse depth, respectively.

this, visual and depth information are combined for view-
based loop closure detection, followed by camera pose
optimization to achieve globally consistent maps.

In this paper, our goal is to build a framework that can
manage many features simultaneously in real time while esti-
mating camera pose robustly. As illustrated in Fig. 1, basic
idea of the proposed method is that a particle filter-based
camera tracking is connected to multiple feature estimators
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via measurement covariances. In particular, the camera
tracking is achieved by a main particle filter, which deals
with the task of camera tracking, while the feature mapping
is performed by independent feature estimators, which have
fixed dimension. The proposed framework has the following
advantages. By virtue of the particle filtering, our system
presents robust camera tracking, which can cope with unpre-
dictable camera motions, such as rapid camera shake or

Jan—Feb 2014 « Vol. 23(1)
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Fig. 3 Initial depth estimation based on the reference frame C, and
current camera particle set x,. Blue spheres represent camera par-
ticles, and their sizes mean weights based on the normal distribution,
which is parameterized by distance p, between each projection ray L,
and corresponding intersection point M.

occlusion. In addition, new features are tracked by indepen-
dent UKFs with fixed dimension, and more features can be
managed simultaneously. These allow our system to scale to
larger environment while achieving robust camera tracking.
An additional feature of our system is that every estimate
required for predictive warping of feature template is
obtained from independent UKFs so that template prediction
can be maintained without any additional filters for the tem-
plate state estimation. Moreover, we split the camera tracking
and feature mapping into two separate tasks, which are
handled in two parallel processes. This approach shares
the theoretical basis presented in previous work, such as
Ref. 25. However, our system is different in that we split
camera tracking and feature tracking into two separate proc-
esses and implement an incremental mapping approach in
which a sparse map of relatively high-quality features are
maintained by feature estimators linked to the particle filter.
We verify the effectiveness of the proposed approach oper-
ating under an AR environment.

X P :K[Rk |tk]

Camera k .

~—= Camera k+1
— \

Fig. 5 Geometry of template prediction. Feature templates are
warped by projective mapping between the camera projection matrix
of time step k and k + 1.

3 Proposed Framework

3.1 Camera Tracking Using a Particle Filter

For the robust camera tracking, we recursively estimate the
pose (position and orientation) of camera for each time step
k. We use a state space model, which has the form
X; = [ty qi]T, consisting of a 3x 1 translation vector
t=[t, 1, t.] and a 4 x 1 quaternion (rotation) vector
4=[4q0 4. 4y q:| to parameterize the camera’s state
with respect to the world coordinate system at time step
k. It is assumed that we have a set of 3-D points
Z = (2,25, ...Zy_1,Zy] whose locations are given in the
world coordinate frame, where M is the number of 3-D
points and z,, the m’th 3-D point. For the camera state x,
we can compute a projection of the m’th 3-D feature point z,,
using the 3-D-2-D projective mapping of the camera as
follows:

Yi = P(x¢) - 2,, = K[R(qy) - 2, + t] = K[R¢|t]Z,,. (1)

Here, K is the 3 X 3 camera calibration matrix and R(q) a
3 % 3 rotation matrix of a quaternion vector ¢. Symbol “~”
denotes the homogeneous coordinate representation. The
camera tracking is then formulated as determining the pos-
terior, p(X¢|yi.x,Z), given the 3-D feature points and their
2-D projections y;.; = [y, - - - Y], which denotes a set of

1.2]
""""""" 0.003sec. =-=--0.0015sec. ===--0.023sec. 0.042 sec
1H
2
= n
2 0
208 1S
[
z o N
b= 1 v
= 06 HE R
< -
= ! \ . \
e 1 1\ 1 .
o 0.4 T \ : T
1 \ ! °
] \ ' '
: ! \ . \
0.2 [Py [ \ 1 .
P LA S . \ / \ . N
25 SO 75 100 125 150 175 200 22S 250 27S 300 325 350 37S 400 425

Particle Index

Fig. 4 Convergence of initial depth likelihood for successive observations for a new feature. Note that
multimodal and highly non-Gaussian depth likelihood estimate converges to a Gaussian-like unimodal
shape (solid line) within 50 ms.
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% Hald'

Fig. 6 Observed feature templates and predictive template warping.
Note that respective templates are warped according to change of the
camera pose.

measurements obtained up until the time step k. At each time
step, we can take measurements from input image and
obtain successive estimates from a recursive Bayesian filter.
Assuming that 3-D scene structure is static and independent
of the system estimates, the recursive process is given as
follows:*®

X, Z)p(x ke
PXY10 Z) :P(Yk| i Z)p( k|Y1.k 1). )
P()’k|)’1:k—1)

This equation is defined by the measurement likelihood
p(Ye|Xk, Z) up to the current time step, and p(X|y;.i—1)s
which incorporates the probability about the camera motion.
The camera tracking involves obtaining successive approx-
imations to the posterior p(X;|y,.r_i, Z). The particle filter
can provide this information in a form of weighted sample
particle set S, = [(x}, w}), (X3, w?), ..., (x},w})]. Here, x}

’ Camera Localization ‘

[ Scene Rendering
2

Camera
Tracking P4 1 Plet
Process $ $
Feature Map
Feature ! )
Mapping P2, 1 F2| P
Process A X
Time / \\ \L New
\__| Feature Feature
Tracking Detection

Fig. 7 Parallelization of camera pose estimation and feature tracking.
Two processes are separated into two tasks, so that the camera
tracking is less influenced by increase of the number of features.
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is the n’th sample of N camera particles at time step k; its
weight w} is proportional to the conditional likelihood
P(Yi|Xt, Z). In order to obtain the state estimate, we need
a probabilistic model for the state transition between time
steps, i.e., p(x¢|X;_1), and a likelihood p(y,|x;, Z) for the
observations given the state and the scene structure. We cur-
rently employ a constant position model, which is more gen-
eral and compact than a constant velocity or constant
acceleration assumption.”’-8

_ tk _ tk—l + Vc
M= (%) B <(Ik—1 ®Q(Qc)>’ )

where V. and Q. are Gaussian uncertainties for the camera
position and the angular displacement, respectively. ¢ repre-
sents the camera coordinate system, @ denotes quaternion
product operation. Equation (3) states that the camera is
assumed to be in the same place from one frame to the
next, but it has Gaussian and unimodal uncertainty, which
in effect allows the camera’s pose to undertake a first-
order random-walk in the state space. This constant position
model has a nonadditive noise model due to the quaternion
product, and this assumption often causes critical problems
within variants of the Kalman filter. An advantage of the par-
ticle filter approach is that it does not matter whether the

Fig. 8 Tracking results of the proposed system for (a) stable condi-
tion, (b) rapid camera shaking, and (c) occlusion. (Video 1,
QuickTime, 8.54 MB) [URL: http:/dx.doi.org/10.1117/1.JEI.23.1
.013029.1].
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Fig. 9 Posterior distribution for each of the camera position parameters over the tracking sequence:

(a) ty, (b) t,, and (c) t,.

noise model is additive or nonlinear. Therefore, we can sim-
ply draw a noise component from a Gaussian distribution for
each particle and compute the nonlinear constant position
function. The next state of the camera pose is defined by
p(x¢|x;_1) and can be modeled by a Gaussian distribution

70
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: z
30 /
20 /

E——

—

Time per Frame (ms)

10

200 300 400 500 600 700 800 1000 1200
Number of particles

Fig. 10 Time consumption for one frame against number of particles
and 15 features.
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D (Xg|X4—1) &« N(X;_1, X), which has mean x;_; and covari-
ance X. The likelihood p(y;|xy, Z) is determined based on
the Gaussian distribution parameterized by the distance
between measurements of the points in Z and projections
of z,, by the camera particles. From the N sample particles
and the relationship of Eq. (1), we obtain a set of projections
corresponding to the i’th feature point, that is, M; =
m},m?,...,m"~! mY]. This set constitutes projected par-
ticle cloud, which involves the probability distribution about
current state. Given a particle x}/, the n’th particle in the
frame k, the relative likelihood w} that m! is equal to
Yi.i» can be computed as follows:

1
wi = p(Yelx}. Z) 2 [
L
- exp [_ Z (mf —y;,)TC™' (m] —y,;)/2], 4)
i=1
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Fig. 11 Tracking accuracy against number of particles. Note that
tracking errors increase as the number of particles decreases:
(a) position error and (b) quaternion error.

where L is the total number of features in the camera image
and C the covariance matrix, which can be obtained from the
distribution of the projected particle cloud. Equation (4) rep-
resents that camera particles with feature measurements
close to real observations will be given higher weight. In
order to obtain the observation yk,i, we compute a set of cor-
relations rk,i = T(zi) * Ik, one for each feature point. Here,
* means the normalized cross-correlation operation, Ik is an
image frame of the time step k, and T(zi) denotes an image
template of the i’th scene point zi. The templates are then
correlated with subsequent input images to indicate potential
corresponding feature points. The relative likelihoods
obtained in Eq. (4) are normalized so that Y V_ w! =
and this ensures that the sum of all the likelihoods is
equal to 1. We resample the particles from the computed like-
lihood so that new particles are randomly generated based on
the relative likelihood w} and the density p(x;|x;_(), and
obtain a set of particles that are distributed according to
P(¥i|Xk, Z). The camera pose is obtained from the mean
of particles. The proposed particle filtering for camera
tracking is detailed in pseudocode of Algorithm 1.

e

= =

Fig. 12 Tracking failure of unscented Kalman filter (UKF) for rapid camera shake. (Video 2, QuickTime,
4.7 MB) [URL: http://dx.doi.org/10.1117/1.JEI.23.1.013029.2].
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3.2 New Feature Detection and Proposed
Parameterization Method

The camera tracking framework relies on the knowledge of
3-D features Z, and they need to be estimated simultaneously
with the camera state. However, the system has no prior
knowledge about the scene structure when it is first switched
on.

We initialize the camera state using a rectangular refer-
ence pattern, which provides four corner features with
known positions and known appearances. The task then is
to dynamically detect new features and to recursively esti-
mate their corresponding coordinates. New features are
detected by running the FAST corner detector to find the
best candidate within a search box of predefined size placed
within the image.”** The position of the search box is
chosen randomly, with the constraint that it should not over-
lap with any existing features. For the detected features, we
estimate their depths using a set of UKFs, which take the role
of auxiliary feature estimators. One problem of the UKF-
based system is that its computational cost increases by
N’ for N feature points. Since the number of features and
the system dimension grow with time, the computational
cost quickly exceeds the maximum capacity allowed for
the real-time operation. In our system, we proposed a method
to estimate the feature coordinates with independent estima-
tors. In particular, we employ UKFs that are independently
assigned to each of the feature points to track. Therefore, we
have N independent UKFs corresponding to each of the N
feature points. As each independent filter has a fixed-state
dimension, computational cost of each filter does not
grow as in the case of the monolithic UKF framework, and
therefore, entire processing time required for the feature
mappings can be considerably reduced. We parameterize the
location of a feature in terms of its direction and depth from
the camera, and they are defined by a unit vector v, in the
direction of the feature and depth d, in the direction of the
projection ray, respectively. Here, r represents the reference
time when the new feature is first detected. For each new
feature, v, can be computed from the camera center and the
feature’s location in the image coordinate system. But the
depth of the feature d, is not certain. Therefore, this should
be included in the feature state estimation. Typically, the
depth information is parameterized in terms of its inverse
form since it makes estimation more linear and Gaussian.
Moreover, it is also more efficient for representing very
large numbers and, therefore, allows feature points to be
mapped over larger ranges.’! Figure 2 shows the simulation
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Fig. 13 Camera state estimates obtained from the particle filter and the UKF. (a) t, and (b) ,.

results, which illustrate a point reconstruction from two par-
allax observations when observed by two cameras at known
locations. It is not difficult to verify that the reconstruction
result using the inverse depth is even closer to the Gaussian
distribution. As the camera pose and 2-D location of the new

Table 1 Performance comparison of tracking approaches.

feature are also uncertain, they need to be included in the
state estimation. From this state model, we can compute
coordinate of a feature point in the world coordinate system.
Once we detect a new feature, we initialize the UKF mean
and covariance as follows:

C = [Erv q, l/drvmﬂ’mz = (xr’yr)T’ &)
Computation Registration
Methods Filter type time (ms) error (MSE)
14 Particle filter 18 0.98 Zep 0 5
z“O = z"invdr ) z"im‘alr = o-inydr9 Zxr
5 Particle filter 17.52 0.89 0 D Y
2 2
UKF Unscented 7.03 0.66 _ | Oxxr Oxyr . (6)
Kalman filter oﬁx, O'}Z,yr
Proposed system Particle filter 10.12 0.87
Here 2, is a 7 X 7 covariance of the camera state vector
Note: MSE, mean squared error. X, = [t.,q,], and X, is a 2 X 2 covariance matrix of the new
013029-9 Jan—Feb 2014 « Vol. 23(1)
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Table 2 Time consumption of each processing step (ms).

Process 10 features 30 features 50 features 70 features 90 features
New particle draw & measurement samples 6.8 9.1 12.51 14.99 16.4
Feature tracking & particle priori estimation 5.1 6.78 7.38 8.04 8.61
1 Particle resampling & camera state estimation 0.12 0.25 0.34 0.41 0.45
st process
Rendering 5.1 5.33 5.41 5.48 5.52
Total 17.12 21.46 25.64 28.92 30.98
New feature incoorporation & map 3.81 4.04 4.25 4.78 5.03
management
2nd process New feature detection & verification 0.23 0.25 0.29 0.32 0.41
UKFs 11.11 13.07 15.99 17.01 21.88
Total 15.15 17.36 20.53 22.11 27.32

feature point of reference image in which the new feature is
first detected. X, can be obtained from the distribution of the
projected particle set. X;,,, iS a variance of the inverse
depth, which is distributed along the projection ray.

3.3 Proposed Method for Initialization of New
Feature Point

At the time when a new feature is detected, we do not have any
information on correlation between the camera pose and state
of the new feature. Therefore, other elements of X in Eq. (6)
are initially set to zero. The camera mean [t,, q,] and covari-
ance X, for the reference frame are computed from the par-
ticle set Sy = [(x}, wh), (x3, w?), ..., (x¥,wl)]. At this point,
we have no information on the depth of new feature, so the
initial depth and the variance X;,,,. cannot be initialized
directly. In this paper, we propose a method to compute
the initial depth and its variance as follows. Once a new fea-
ture point is detected, its 2-D coordinate, template image, and
the camera pose at the time when the feature is first detected
are recorded. The template is then correlated with subsequent
images to indicate potential corresponding points. Since we
have the camera pose in both the initial (reference) and sub-
sequent frames, we can triangulate potential corresponding
points to obtain depth distribution of the new feature point,
as illustrated in Fig. 3. Given the particle distribution of
the camera states in time step k, represented as the particle
set S;, we can compute a number of back-projection rays
L} corresponding to each of the sample particles x} for the
candidate feature template. Each of these rays intersects
with the back-projection ray L, of the reference image
frame. If the two back-projection rays intersect perfectly,
the distance between the two rays will be zero. In general,
however, they are not likely to meet at one intersection
point perfectly. In this case, the intersection is given as a
point M}, where the distance between L, and L} becomes
minimum. We assign a weight to each intersection point
based on the normal distribution parameterized by the
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distance between the rays (p, of Fig. 3). Finally, we obtain
a one-dimensional depth distribution lying along the refer-
ence ray L,. This distribution is recursively updated over a
number of frames. Once this distribution becomes unimodal,
we assume that the distribution is approximately Gaussian
and compute the mean of inverse depth and its variance,
and hand the estimates over to the feature estimator. This proc-
ess continues until the weight distribution converges to a
unimodal form. If the distribution does not converge during
a predetermined number of matching attempts, it is not
regarded as a true 3-D feature, and the feature initialization
is abandoned. Figure 4 shows evolution of the distribution
over time. We can verify that the distribution converges
quickly on a Gaussian form as the camera moves. From
the initial mean and covariance given as Eqgs. (5) and (6),
the 3-D coordinate of the m’th feature in the &’ th frame is com-
puted as follows:

R 1 _ _ _
2, =ty + Eka’ka = (Py) My, P(X;) = [Pyhy].
(7

Here, D,,, is the direction of the m’th feature point, t,, is
the camera position corresponding to the m’th feature in the
k’th frame, and P, represents the 3 x 3 submatrix of the cam-
era projection matrix of Eq. (1), that is, P, = K - R;. And
dy,n 1s the depth of feature point.

3.4 Feature Tracking Using UKF

In the proposed framework, we assume that the scene is
static, and a nonlinear state equation is defined by
Xiy1 = f(x4,n;). Here n; is a system noise vector and is
assumed to be a zero vector in the proposed framework.
For feature points y,,;, the m’th feature point of the k’th
frame, we define a measurement model as follows:

Jan—Feb 2014 « Vol. 23(1)
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Fig. 14 Initializations of feature points: (a) frame #422, (b) #429, (c) #435, and (d) #441.

Yuk = [P(ik)zm] + N, = K[RI}HEZ]Zm + .

X
_ [ mk} Fn ®)
Ymk
Here, n,,, € R*M is a noise vector for the m’th feature

point of the k’th frame, and its covariance matrix is given
as follows:
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R, =R, + 6% =R, + Cov[P(X;)z,,). )

In Eq. (9), R,, is due to the image pixel noise and can be
assumed to be very small. 62, represents the uncertainty of
current camera state X;. This measurement noise covariance
is computed for every frame k by projecting each feature
point z,, into the camera particles. If the feature tracking
is accurate, the estimated feature coordinate will be

Jan—Feb 2014 « Vol. 23(1)
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Fig. 15 Initial depths of feature points converging to depth estimates.

Table 3 Average feature estimation difference between particle filter (PF) and UKF.

Feature No. #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Avg. Diff.
PF 0.00 0.00 0.00 0.00 -1.15 1.33 -1.25 3.00 2.25 -1.21 0.50
UKF 0.00 0.00 0.00 0.00 1.00 -0.70 0.59 -1.80 0.53 0.46 0.01
|PF-UKF| 0.00 0.00 0.00 0.00 2.15 2.03 1.84 4.80 1.72 1.67 2.37

coincident with the real feature location. In this case, feature
projections into the camera particles distribute near the cor-
rect feature point, and they constitute a Gaussian distribution.
In the case of a wrong feature, however, the projection point
is not likely to be located near the correct point, and its prob-
ability tends to approach zero. Any features that do not con-
verge rapidly to the correct position are regarded as wrong
features and removed from the map.

3.5 Predictive Warping of Feature Template

As described in the previous section, new feature templates
are detected by using the FAST corner detection operator
from the images obtained from the camera.””*° Then the

Table 4 Comparison of MSE of camera parameters

te ty t,
PF 2.83x 107! 1.85%x10°"  3.33x1073
UKF  1.06x102 832x102 1.62x1072
9% q, 92 qs
PF 5.12x104 3.33x10% 1.56%x10% 5.87x102
UKF  6.12x10° 1.05x10%4 785x10° 7.56x10°
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template matching attempts to identify the same feature
template from subsequent image frames. However, straight-
forward template matching may be limited under unpredict-
able camera motions, as even by a small change of camera
pose the appearance of a template can be greatly changed. In
order to minimize this problem, we propose a template pre-
diction method. A similar approach is introduced in Ref. 2,
but our method is quite different in that every estimate
required for the predictive template warping can be obtained
from the feature estimators, so that the template prediction is
maintained without additional framework for template state
estimation. We assume that each feature template lies on a
small planar surface in the 3-D scene space. Since we are
not given any prior knowledge on the orientation of this sur-
face, it is also assumed that the surface normal is parallel to

100
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0
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Fig. 16 Processing time of our system and UKF-based tracking
against number of features.
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Fig. 17 Tracking curves for comparing against ground truth. In each plot, the dashed line represents the
true values of the camera parameters, while the solid line depicts those obtained by our algorithm for the
1400 frames of the sequences. (a) i, (b) t,, (C) t;, (d) 4, (€) 9z, and (f) qs.

the projection ray that passes through the feature and the
camera center at the initialization step. Once the 3-D coor-
dinate and the depth are initialized by the scheme described
in the previous section, each feature template is then stored in
the form of a small planar patch. When a feature is tracked
in the subsequent camera images, the feature template can
be projected from the 3-D scene space to the image plane
to produce a warped template for matching with the current
image.

Suppose a template is located on a planar surface
7 = (N7, d;)T whose surface normal is N} and depth to
template is d; then two camera matrices are given by

Then, the projective transformation between the k’th
image plane and that of the k 4 1°th time step in the refer-
ence frame is expressed by
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T
HO_R—% (11)

From the projective mapping between the 3-D scene
space and the image plane, the projective transformation
H between the two image planes is computed as follows:*

T
H:K(R—%)K". (12)

This procedure is illustrated in Figs. 5 and 6, which depict
an example of the predictive template warping. In the pro-
posed framework, every estimate required for the template
warping can be obtained from the feature trackers. The sur-
face normal N, of the plane 7 is obtained directly from the
feature tracker’s projection ray q, of Eq. (5) and the scale
parameter d;, from the depth estimate. Therefore, the tem-
plate prediction is maintained without additional framework
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Fig. 18 An example of the camera tracking in a desktop environment. A virtual object is augmented on
the basis of geometric structure, which is obtained by the proposed system. (Video 3, QuickTime,
12.2 MB) [URL: http://dx.doi.org/10.1117/1.JEI.23.1.013029.3].

for template state estimation, and this may reduce the com-
putational cost.

3.6 Parallelization of Feature Mapping and Camera
Tracking

As the number of features increases, the computational cost
of maintaining camera pose estimates rises rapidly, and this
often prohibits real-time operation. In the proposed system,
we split the camera tracking and feature mapping into two
separate tasks, which are handled in two parallel processes. If
the camera pose estimation and feature tracking can be sep-
arated independently, the camera tracking is less influenced
by increase of the number of features, and therefore, more
robust camera tracking and feature mapping can be achieved.
This is illustrated in Fig. 7.

4 Results

Experiments are carried out using a desktop PC running MS
Windows XP and a IEEE1394 camera with a resolution of
320 x 240 pixels at 30 frames per second. Figures 8(a) to
8(d) show that the camera tracking is achieved successfully
over an extended period as the camera is moved with arbi-
trary motion over a desktop. The camera tracking is initial-
ized with four known reference points in the scene
corresponding to the corners of a rectangular pattern. In addi-
tion, Fig. 8 depicts the view through the camera and a 3-D
view seen from the reference coordinate system, which also
shows the camera trajectory. The views through the camera
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are augmented with the OpenGL teapot using the mean cam-
era pose from the posterior, which also confirm that the
tracking is quite stable. Also shown in Fig. 8 are the projec-
tions of the four reference points into each frame for each of
the camera particles. The external view of the scene geom-
etry represents the 3-D position of the particles and the mean
camera state of the sample distribution. Figures 8(b) to 8(c)
show tracking results for when the camera is being rapidly
shaken and when the scene is severely occluded by an object.
Note the abrupt spread of the particle distribution as camera
shaking or occlusion occurs. This causes the filter to search
wider over the state space in the active search phase until the
feature templates are matched, while particles have equal
weight. In the case that particles have uniform weight, cam-
era samples cannot converge onto a correct camera pose. If
this unstable state continues, the camera samples will uncon-
trollably spread out, and this may lead the tracking to a cata-
strophic failure. Figure 9 illustrates posterior distributions for
each of the camera extrinsic parameters over the tracking
sequence. In the figure, camera shake occurs between frames
110 and 165, and the severe occlusion between 165 and 180.
In each case the estimated posterior spreads and then rapidly
converges as shaking or occlusion stops. This verifies robust-
ness of the camera tracking framework when it encounters
unpredictable motion. Figure 10 shows processing time
per period against number of particles and 15 features,
and Fig. 11 illustrates the corresponding tracking accuracy.

In order to estimate the tracking error, we employed the
RealViz® MatchMover package. It uses batch techniques

Jan—Feb 2014 « Vol. 23(1)
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(e)

V)

Fig. 19 Camera tracking and feature mapping of UKF (left) and the proposed system (right). The UKF
becomes unstable around frame 1000 and eventually fails to track after frame 1100 due to severe frame
rate drop. (a) frame #530, (b) frame #3883, (c) frame #1297, (d) frame #1475, (e) frame #1575, (f) frame
#2378. (Video 4, QuickTime, 9.0 MB) [URL: http://dx.doi.org/10.1117/1.JEI.23.1.013029.4].

that yield very accurate results and allows manual interven-
tion, which we have used to ensure correctness. We use its
output as the ground truth of a series of sample image
sequences. Then we compute the tracking data of the pro-
posed system on the same sample image stream in order
to compare the tracking accuracy. As the number of particles
increases, processing timing also grows and tracking perfor-
mance tends to be more accurate. Based on these results, we
use 350 particles. In order to illustrate the benefits of the pro-
posed framework, we compare its performance with that of
the UKF as shown in Figs. 12 and 13.

Figures 12 and 13 show that the UKF becomes unstable
and fails to track around frame 1100 due to rapid shake. On
the other hand, in case of our system, the posteriors rapidly
converge to the most probable particle, and this ensures that
our system recovers within 3 to 5 frames and continues stable
tracking even after the unpredictable motion.

Table 1 shows the performance of our system and those of
other three camera tracking approaches. This table represents
registration errors and time consumption to achieve camera
pose estimation of each technique. The measurements are
made for seven feature points whose locations are predefined.
We see that UKF tracking is slightly faster and more accurate
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than the other systems. But the difference is quite trivial and
our system also presents very good performance. In fact, time
limit required for real-time operation is ~33 ms, and the dif-
ference between the systems is quite marginal. The registra-
tion errors are also presented. This error represents the
distances between the predefined 3-D points and reprojected
points by the tracking systems. If camera tracking is accurate,
the reprojected points by tracking system will be coincident
perfectly with the known points, and the distance will be close
to zero. We can verify that the registration error is also accept-
able regarding augmented reality application. Figure 14
shows an example of the feature tracking near the reference
pattern. The system is initialized with four corner points of a
black rectangular pattern. Each feature point is represented by
an ellipsoid, which is parameterized by the feature covariance.
Once a new feature is detected, an independent feature esti-
mator is assigned to it. A new feature has very large uncer-
tainty at the beginning of the tracking, but it is reduced
quickly as the feature point converges. This is also verified
from Fig. 15, which shows the resulting depth estimates of
the feature point estimates. We can see large spikes in the
depth estimates as new feature tracking filters are initialized,
which then reduce rapidly as the estimates converge. Table 2
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Fig. 20 Real-time camera tracking and feature mapping. The camera starts at a place where the refer-
ence pattern is located and then moves away from the initialization point on the desktop. (Video 5,
QuickTime, 17.4 MB) [URL: http://dx.doi.org/10.1117/1.JEI.23.1.013029.5].
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shows that the proposed system operates in real time with a
frame rate over ~24 frames per second when ~100 features
are being mapped and tracked. All measurements are made
using a PC, which has an Intel Core 2 Duo 2.66 GHz proc-
essor, 4 GB RAM, and an IEEE1394 camera with a resolution
of 320 x 240 pixels.

In order to compare accuracy of our system against that of
the UKF, we perform simulations based on synthetic geomet-
ric data. For the simulations, we first capture motion of the
camera. That is, we record the estimated motion data during
real-time camera tracking, and this recorded motion is used
to generate synthetic measurement data. This approach
makes it simple to perform simulations with a variety of real-
istic motions. Then, we generate noiseless image measure-
ments of 10 co-planar reference points and obtain 3-D
coordinates of the 10 reference points from UKF and the pro-
posed framework, respectively. In order to compare the
results, we compute differences between the results of the
proposed method and those of UKF. In the simulation,
our system employs a constant position motion model
with Gaussian uncertainty, and the UKF is designed to
use the same constant position model and all noise variances
are set to be equivalent for both filters. Results are given in
Tables 3 and 4. We see that UKF-based tracking presents
slightly more accurate performance than the proposed sys-
tem, but the difference is trivial. Therefore, we can conclude
that the difference between the two tracking frameworks is
not significant.

Time consumption per frame of the proposed and the
UKF-based framework is presented in Fig. 16, which
shows that the processing time of the conventional frame-
work using a monolithic UKF grows as the number of fea-
tures increases, and the computational cost exceeds the
maximum capacity for ~30 feature points. Figure 17 illus-
trates tracking curves for comparing the accuracy of the pro-
posed system against ground truth. The ground truth was
generated with the MatchMover package, and the tracking
data were computed from the same sample image stream.
The tracking curves of the commercial software and the
results of our method remain close to each other, and this
shows that our system can perform robust tracking without
critical tracking error.

Figure 18 illustrates an example that shows that the pro-
posed system successfully tracks the camera moving over a
desk environment. The upper-right images show the 3-D
localization and mapping and the upper-left images show
the projection of the mean and covariances of the mapped
scene points in the camera view. The augmented scene is
presented in the lower-left images.

We have compared the performance of the proposed
framework with that given by a monolithic (full covariance)
UKF-based system implemented in the same video
sequence. Figure 19 shows the results of the camera tracking
and feature mapping by the UKF and the proposed system. In
each figure, the left images present the tracking results of the
UKEF framework, while the right column illustrates the cam-
era is being tracked by our system. At the beginning of the
test, both systems start to track the camera and then detect
new features to track in real time. However, the UKF
becomes quite unstable around frame 1000 and eventually
fails to track after frame 1100 due to severe frame rate drop.
In fact, this is also verified from Fig. 16, which shows that

Journal of Electronic Imaging

013029-17

the processing time of the UKF rapidly grows as the number
of features increases, and the computational cost starts to
exceed the capacity for more than ~30 features (that is,
around frame 1000 of the test video sequence). Figure 20
presents an example of the system traversing a room. The
camera starts at a place where the reference pattern is located
and then moves away from the initialization point on the
desktop. More than 100 features are incorporated in the fea-
ture map, and 250 particles are used for the camera state
estimation. The system runs at a frame rate of more than
24 Hz throughout the sequence. The results verify that the
system also achieves successful camera tracking in a larger
environment.

5 Conclusion and Future Work

We have presented a real-time camera tracking framework
that combines a camera tracking filter and multiple feature
estimators. The camera tracking is performed by a particle
filter, while the feature tracking and mapping is achieved
by independent feature trackers that perform unscented
Kalman filtering. The camera tracking and feature mapping
are split into two independent frameworks, which are treated
in two parallel processes. In addition, we employed a tem-
plate prediction technique in order to compensate change of
the template appearance caused by the camera motion. The
results show that the system achieves successful camera
tracking and feature mapping in an AR environment. As a
future work, we will conduct further study to employ a
system that combines the FastSLAM framework and UKF
for more robust camera tracking and feature mapping.
We believe that the proposed framework can be employed
as a useful tool in augmented reality systems and other
camera-tracking-related works.
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