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Abstract. A telescope control system relies on a pointing model to determine the gimbal angles that aim the
telescope toward a desired target. High-accuracy telescope pointing models include parameters that describe
the mount/telescope orientation as well as common mechanical effects. For professional telescopes, calibrating
the pointing model requires careful initial alignment around a nominal orientation (e.g., leveling) followed
by sightings of dozens to hundreds of stars to fit the model parameters. While this approach is effective for
observatories, applications such as transportable optical ground stations for communications, space situational
awareness, or astronomy using low-cost telescope networks can benefit from a more rapid calibration approach.
We formulate a quaternion-based pointing model that utilizes measurements from an externally mounted star
camera to compromise between calibration speed and accuracy. A key aspect of this formulation is that it is
completely agnostic to the orientation of the telescope/mount so that no manual prealignment is required.
We derive angle and rate commands for telescope pointing and tracking based on the model. We present results
from a 15-min calibration procedure on a very low-cost telescope that demonstrated pointing to an accuracy of
53 arc sec RMS in azimuth and 66 arc sec RMS between 20-deg and 70-deg altitude. © The Authors. Published by SPIE
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1 Introduction
High-accuracy telescope pointing and tracking is required for
many applications, such as astronomy, space situational aware-
ness, and optical communication. A telescope control system
relies on a pointing model to determine the gimbal angles to
point toward a desired target. The pointing model is at the
core of the “virtual telescope” concept. This concept was pro-
posed in the 1970s by the designers of the Anglo-Australian
Telescope,1,2 and it allows for modular and user-friendly control
system software. A “virtual telescope” module behaves as a
perfect telescope and the messy transformations and corrections
needed to point the physical telescope are contained within it.
High-accuracy telescope pointing models include parameters
that describe the mount/telescope orientation as well as common
static and dynamic mechanical effects.

The block diagram in Fig. 1 summarizes the basic pointing
problem. The inputs to the pointing model are the current time,
location, target vector in the inertial frame, and the desired target
vector in the detector frame. Though the astrometric and detec-
tor models that go into producing the target vectors are nontri-
vial, they are not the focus of this work and we assume that
the appropriate target vectors have been calculated. The pointing
model consists of a series of rotations that relate the inertial
frame to the detector frame, and the gimbal angles appear within
these rotations. If a trajectory is desired, gimbal rates can be
determined by differentiating the pointing model equations.

There are two mathematically different approaches to devel-
oping the pointing model. A simple approach is to determine
the gimbal angles for an ideal telescope and then apply small
additive corrections to generate the commanded gimbal angles.
A more rigorous approach is to pose the full problem in matrix/
vector form and solve these equations for the commanded
gimbal angles.3 The simplified approach is sufficient for small
corrections but ignores the coupling between corrective terms.

The original TPOINT developer Wallace1 proposed a
condensed seven-term pointing model.3 While prior models
had many terms, in which each applied a linear correction
½ΔAz;ΔEl� to the commanded mount angles, the revised model
is based on a more rigorous matrix/vector formulation. Wallace4

also provided a very simple pointing model that produces linear
corrections based on the seven terms. The pointing model for
the Massachusetts Institute of Technology (MIT) 37-m diameter
Haystack antenna, which predates TPOINT, also used a seven-
term model with a slightly different formulation.5 A six-term
model (excluding a term for vertical deflection of the telescope)
has been proposed that can be calibrated with star sightings or
with an autocollimator and precision calibrated gimbal setup.6

Professional software such as TPOINT is effective for fixed
telescopes in observatories. However, for some applications,
faster calibration is desirable, such as portable telescopes for
optical communications.7 Additionally, many low-cost tele-
scopes have incremental rather than absolute encoders. These
telescopes require recalibration after every power cycle as the
zero position is reset. They commonly have a built-in calibration
procedure that requires sighting a few stars, but it is insufficient
for applications, where better than several arc min of accuracy is*Address all correspondence to: Kathleen M. Riesing, E-mail: kriesing@mit.edu
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required. Improving the pointing and tracking accuracy of
low-cost hardware enables its use for applications in space
situational awareness and astronomy. Low-cost hardware is
particularly valuable to enable large-telescope networks.

To enable rapid calibration while maintaining high accuracy,
we formulate a quaternion-based pointing model that utilizes
measurements from an externally mounted star camera. Star
cameras are used frequently in spacecraft to determine their ori-
entation. By taking an image of a portion of the sky and com-
paring the relative positions of observed stars against a catalog
of known stars, the observed stars can be identified to provide
a unique orientation solution. The solution is typically in the
form of a quaternion. Quaternions are a useful representation
of orientation that avoids the possibility of a mathematical
singularity known as gimbal lock (refer to Appendix for more
detail on quaternions).

The calibration builds-off of the work in Ref. 8 and is aug-
mented to include additional pointing model terms that account
for gimbal nonperpendicularity and vertical deflection of the
telescope. These additional terms improve calibration residuals
by 70%, from 150 arc sec root-mean-square (RMS)8 to 45 arc
sec RMS, on the telescope setup described in Sec. 4. A key
aspect of our formulation is that it is completely agnostic to
the initial orientation of the telescope/mount so that no manual
alignment (e.g., leveling) is needed. Even the type of mount
(e.g., equatorial) does not need to be specified to the software,
as long as it is has two nominally perpendicular gimbal axes.
The quaternion-based formulation provides a rigorous approach
that enables direct use of star camera measurements.

There are three key benefits of the pointing model
formulation presented in this work as compared to existing
approaches: (1) the 10-parameter model is tailored for use with
a star camera to greatly speed up calibration while maintaining
accuracy, (2) the pointing model makes no assumptions about
the mount type or orientation, which minimizes manual set up
time, and (3) the gimbal angle and rate commands are derived
analytically from the pointing model for completeness.

We describe the approach to calibrate the pointing model
using a star camera. We present the analytically derived
angle and rate commands for telescope pointing and tracking.
We present results from a 15-min calibration procedure on
a low-cost telescope that demonstrated an accuracy of 85 arc
sec RMS on 15 stars between 20-deg to 70-deg altitude. This
procedure demonstrates the algorithm’s functionality in prac-
tice, but the pointing performance depends heavily on the
quality of the telescope and hardware. The results are meant to

serve as an example but not as a lower or upper bound for
algorithm performance.

2 Pointing Model
In this section, we present the pointing model formulation and
how the pointing model can be applied to generate gimbal angle
and rate commands. The calibration of the terms in the pointing
model is covered in Sec. 3.

2.1 Reference Frames

The reference frames relevant to the derivation of the pointing
model are defined in this section. They are presented in the order
in which they are applied in the pointing model. Azimuth and
altitude descriptors are used from this point on, but for other
mount types, simply replace them with “roll” and “pitch” or
other descriptors.

• J2000 (J2K) frame: The J2000 frame is an Earth-centered
inertial frame. The fundamental plane of this frame is the
equator, and the X axis points toward the vernal equinox.
The Z axis points through the north pole, and the Y axis
forms a right-handed set 90 deg east of the X axis. These
directions are fixed with the mean equator and equinox at
12:00 Terrestrial Time on January 1, 2000.

• East-north-up (ENU) frame: The east-north-up (ENU)
frame provides local horizontal coordinates. It is centered
at the telescope site. The X axis is defined as east, the Y
axis as north, and the Z axis forms a right-handed set
toward zenith.

• Mount (MNT) frame: TheY axis is defined by the azimuth
gimbal rotation axis at time t0 when the telescope is
powered on. The Z axis is defined as the cross-product
between the altitude and azimuth gimbal axes at time t0.
The X axis forms a right-handed set.

• Gimbaled (GIM) frame: The gimbaled frame (GIM) is the
mount frame (MNT) rotated through gimbal azimuth ψ
and altitude α as read by the encoders. Note that a non-
perpendicularity between the azimuth and altitude axes of
the gimbals is allowed.

• Star camera nominal (ST) frame: The X axis is defined by
the horizontal direction in the star camera mounted exter-
nally to the telescope. The Y axis is defined by the vertical
direction in the star camera mounted externally to the

Fig. 1 Block diagram showing the basic telescope pointing problem of how to generate gimbal angles.
The current time, location of the telescope, target vector in the inertial frame, and target vector in the
detector frame are taken as inputs. The pointing model consists of a series of rotations that relate
the inertial frame to the detector frame. Contained within these rotations are the desired gimbal angles.
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telescope. The Z axis is defined by the star camera
boresight, which is assumed to be perpendicular to the
focal plane.

• Observed (OBS) frame: This frame is the star camera
nominal frame (ST) rotated about a vector defined by
the cross-product of zenith and the telescope boresight.
This contains the vertical deflection of the telescope due
to gravity as well as the effect of atmospheric refraction.

2.2 Formulation

Each star camera image yields a quaternion rotation between the
J2000 frame and the observed frame (OBS). A star camera
measurement at time t is given by
EQ-TARGET;temp:intralink-;e001;63;588

OBSqJ2KðtÞ ¼ qn ⊗ OBSqSTðtÞ ⊗ STqGIM ⊗ GIMqMNTðtÞ
⊗ MNTqENU ⊗ ENUqJ2KðtÞ; (1)

where qn is the star camera measurement noise and the notation
AqB is used to represent a quaternion rotation from frame B to
frame A. The definition of the quaternion multiplier⊗ and other
details on quaternions can be found in Appendix. The rotation
from the J2000 to ENU frame, ENUqJ2KðtÞ, can be calculated
using the International Earth Rotation and Reference Systems
Service model.9 The other rotations each contain unknown
calibration parameters, which will be defined.

The rotation from the ENU frame to the MNT frame,
MNTqENU, is unknown and must be estimated fully. The rotation
from the MNT frame to the GIM frame is given by a rotation
through the known azimuth and altitude gimbal angles, ψðtÞ and
αðtÞ, which can be read out from the encoders. A nonperpendi-
cularity between the gimbal axes is accounted for by introducing
a rotation angle θNP in the XY plane of the MNT frame. Overall,
the rotation from the MNT frame to the GIM frame is given by

EQ-TARGET;temp:intralink-;e002;63;360

GIMqMNTðtÞ ¼ qNP ⊗ qaltðtÞ ⊗ q−1NP ⊗ qaziðtÞ: (2)

The azimuth rotation is given by

EQ-TARGET;temp:intralink-;e003;63;317qaziðtÞ ¼
�
0 sinðψðtÞ∕2Þ 0 cosðψðtÞ∕2Þ �T: (3)

The altitude rotation is given by

EQ-TARGET;temp:intralink-;e004;63;273qaltðtÞ ¼
�
sinðαðtÞ∕2Þ 0 0 cosðαðtÞ∕2Þ �T: (4)

The nonperpendicularity between the gimbal axes is given by

EQ-TARGET;temp:intralink-;e005;63;229qNP ¼ �
0 0 − sinðθNPÞ cosðθNPÞ

�
T: (5)

Equations (2)–(5) define the rotation from the MNT frame to
the GIM frame, which contains one unknown, θNP.

The next rotation is from the GIM frame to the ST frame,
STqGIM. This unknown is particularly relevant for a telescope
with incremental encoders because the zero position of the tele-
scope is arbitrary upon startup. This rotation is unknown and
must be estimated fully.

The rotation from the ST frame to the OBS frame is given by
a small vertical deflection that describes the sag of the telescope.
We introduce an unknown vertical deflection coefficient, ad.
Additionally, we introduce the vector vdðtÞ, which is the axis
about which vertical deflection occurs defined in the OBS

frame. It is given by the normalized cross-product of zenith
and the telescope boresight:

EQ-TARGET;temp:intralink-;e006;326;730vdðtÞ ¼
�
AðOBSqENUðtÞÞ½ 0 0 1 �T

�
× rteljOBS����AðOBSqENUðtÞÞ½ 0 0 1 �T

�
× rteljOBS

��� ; (6)

where rteljOBS is the telescope boresight vector as observed in
the star camera. This vector is determined by an intercamera
alignment procedure described in Sec. 3.1. It contains two
degrees of freedom determined by the ðx; yÞ location of bore-
sight on the star camera. The rotation from the ST frame to
the OBS frame is described by

EQ-TARGET;temp:intralink-;e007;326;605

OBSqSTðtÞ ¼
�
sin½ad cos½αobsðtÞ�∕2�vdðtÞ
cos½ad cos½αobsðtÞ�∕2�

�
: (7)

In summary, the unknowns that must be estimated are
MNTqENU, θNP, STqGIM, and ad. This results in a total of eight
unknown parameters, plus two parameters from intercamera
alignment, resulting in a total of 10 parameters in the overall
model.

2.3 Gimbal Angle and Rate Commands

The primary goal of the pointing model is to determine how to
provide angle and rate inputs to the mount to look at a desired
target, which we derive in this section. Let rpntjJ2K be the unit
pointing vector from the telescope to the target in the J2000
frame. This unit pointing vector is given by

EQ-TARGET;temp:intralink-;e008;326;418rpntjJ2K ¼ rtargjJ2K − rgsjJ2K
krtargjJ2K − rgsjJ2Kk

; (8)

where rtargjJ2K is the target in the J2000 frame and rgsjJ2K is
the ground station in the J2000 frame.

The pointing model can be applied to image a target in the
primary detector (the detector behind the telescope) as follows:
EQ-TARGET;temp:intralink-;e009;326;327

rteljOBS ¼ AðOBSq̂ST ⊗ STq̂GIM ⊗ GIMq̂MNT ⊗ MNTq̂ENU

⊗ ENUqJ2KÞrpntjJ2K: (9)

The gimbal angles appear in both OBSq̂ST, which determines
the vertical deflection of the telescope, and GIMq̂MNT, which
executes the gimbal rotation. A simplifying assumption is made
that OBSq̂ST can be evaluated based on the target azimuth
and altitude, which can be determined from rpntjENU. This
assumption states that the vertical deflection from the unde-
flected position is approximately the same as the vertical deflec-
tion would be at the desired location. Since the deflection should
be less than a degree in altitude and deflection is proportional to
the cosine of the altitude angle, this is justified.

This assumption allows the problem to be simplified greatly.
The gimbal angles only appear in the GIMq̂MNT transformation,
so Eq. (9) can be simplified as follows:

EQ-TARGET;temp:intralink-;e010;326;131rteljGIM ¼ AðGIMq̂MNTÞrpntjMNT
; (10)

where rpntjGIM and rpntjMNT
are determined by multiplying the

appropriate transformations.
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Combining Eqs. (2) and (10) and rearranging yields:

EQ-TARGET;temp:intralink-;e011;63;741Aðq−1NPÞrteljGIM ¼ Aðqalt ⊗ q−1NP ⊗ qaziÞrpntjMNT
: (11)

For notational simplicity, let

EQ-TARGET;temp:intralink-;e012;63;693a ¼ Aðq−1NPÞrteljGIM (12)

and

EQ-TARGET;temp:intralink-;e013;63;646b ¼ rpntjMNT
: (13)

Using the definitions from Eqs. (3)–(5) to multiply out
Eq. (11) gives the set of equations:

EQ-TARGET;temp:intralink-;e014;63;593a1 ¼ cosðθNPÞ cosðψÞb1 þ sinðθNPÞb2 − cosðθNPÞ sinðψÞb3;
(14)

EQ-TARGET;temp:intralink-;e015;63;548

a2 ¼ ½− sinðθNPÞ cosðαÞ cosðψÞ þ sinðαÞ sinðψÞ�b1
þ cosðθNPÞ cosðαÞb2 þ ½sinðθNPÞ cosðαÞ sinðψÞ
þ sinðαÞ cosðψÞ�b3; (15)

EQ-TARGET;temp:intralink-;e016;63;487

a3 ¼ ½sinðθNPÞ sinðαÞ cosðψÞ þ cosðαÞ sinðψÞ�b1
− cosðθNPÞ sinðαÞb2 þ ½− sinðθNPÞ sinðαÞ sinðψÞ
þ cosðαÞ cosðψÞ�b3; (16)

where ai denotes the i’th element of vector a and likewise with
vector b.

To solve for the gimbal angles, we first provide a general
relationship that can be applied to Eqs. (14)–(16). Given an
equation of the form:

EQ-TARGET;temp:intralink-;e017;63;368u cosðθÞ þ v sinðθÞ ¼ w (17)

by applying the Pythagorean trigonometric substitution for
sinðθÞ, rearranging, squaring the equation, and applying the
quadratic formula, we arrive at two solutions for cosðθÞ:

EQ-TARGET;temp:intralink-;e018;326;719 cosðθÞ ¼ uw� ½2u2w2 − 2ðu2 þ v2Þðv2 þ w2Þ�1∕2
u2 þ v2

: (18)

Equation (14) is in the form of Eq. (17), so cosðψÞ can be
calculated with Eq. (18). This yields four possible solutions for
the azimuth angle ψ . Multiplying Eq. (15) with cosðαÞ and sub-
tracting Eq. (16) multiplied by sinðαÞ yields an equation in the
form of Eq. (17), which can be solved for cosðαÞ, with u, v, and
w given by

EQ-TARGET;temp:intralink-;e019;326;611u ¼ a2; (19)

EQ-TARGET;temp:intralink-;e020;326;583v ¼ −a3; (20)

EQ-TARGET;temp:intralink-;e021;326;558

w ¼ − sinðθNPÞ cosðψÞb1 þ cosðθNPÞb2
þ sinðθNPÞ sinðψÞb3: (21)

Equation (21) depends on the azimuth angle ψ , which has
four possible solutions. This yields eight possible solutions for
cosðαÞ and 16 possible solutions for the altitude angle α. If there
are angle restrictions, such as 0 < α < π∕2, they can be applied to
reduce the solution set. The correct solution for the gimbal angles
can be determined by testing each solution against Eq. (11).

By differentiating Eqs. (14)–(16), the desired gimbal rates
can be determined to track a target. This applies to both celestial
objects and noncelestial objects such as satellites. It is assumed
that _rpntjMNT

has been calculated by taking into account the
motion of the target and Earth rotation. The rate of change
of the target in the primary detector can be specified in calculating
_rteljGIM. Setting _rteljGIM ¼ 0 will maintain the target in a fixed
location in the primary detector (assuming a nonrotating field).
The equations resulting from this differentiation are as follows:

EQ-TARGET;temp:intralink-;e022;63;332

_a1 ¼−cosðθNPÞ sinðψÞ _ψb1 − cosðθNPÞcosðψÞ _ψb3þ cosðθNPÞcosðψÞ _b1þ sinðθNPÞ _b2 − cosðθNPÞ sinðψÞ _b3; (22)

EQ-TARGET;temp:intralink-;e023;63;306

_a2 ¼ ½sinðαÞ cosðψÞ½sinðθNPÞ _αþ _ψ � þ cosðαÞ sinðψÞ½sinðθNPÞ _ψ þ _α��b1 þ ½cosðαÞ cosðψÞ½sinðθNPÞ _ψ þ _α�
− sinðαÞ sinðψÞ½sinðθNPÞ _αþ _ψ ��b3 − cosðθNPÞ sinðαÞ _αb2 þ ½sinðαÞ sinðψÞ − sinðθNPÞ cosðαÞ cosðψÞ� _b1
þ cosðθNPÞ cosðαÞ _b2 þ ½sinðθNPÞ cosðαÞ sinðψÞ þ sinðαÞ cosðψÞ� _b3; (23)

EQ-TARGET;temp:intralink-;e024;63;243

_a3 ¼ ½cosðαÞ cosðψÞ½sinðθNPÞ _αþ _ψ � − sinðαÞ sinðψÞ½sinðθNPÞ _ψ þ _α��b1 þ ½− sinðαÞ cosðψÞ½sinðθNPÞ _ψ þ _α�
− cosðαÞ sinðψÞ½sinðθNPÞ _αþ _ψ ��b3 − cosðθNPÞ cosðαÞ _αb2 þ ½cosðαÞ sinðψÞ þ sinðθNPÞ sinðαÞ cosðψÞ� _b1
− cosðθNPÞ sinðαÞ _b2 þ ½− sinðθNPÞ sinðαÞ sinðψÞ þ cosðαÞ cosðψÞ� _b3: (24)

Equation (22) can be solved for the azimuth gimbal rate:

EQ-TARGET;temp:intralink-;e025;63;161 _ψ ¼ − _a1 þ cosðθNPÞ cosðψÞ _b1 þ sinðθNPÞ _b2 − cosðθNPÞ sinðψÞ _b3
cosðθNPÞ sinðψÞb1 þ cosðθNPÞ cosðψÞb3

: (25)

Multiplying Eq. (23) by cosðαÞ and subtracting Eq. (24) multiplied by sinðαÞ yields a solution for the altitude gimbal rate:

EQ-TARGET;temp:intralink-;e026;63;93 _α ¼ cosðαÞ _a2 − sinðαÞ _a3 − sinðθNPÞ½sinðψÞð _ψb1 þ _b3Þ þ cosðψÞð _ψb3 − _b1Þ�
sinðαÞb1 þ cosðαÞb3

: (26)
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Using Eqs. (25) and (26), the mount can be commanded to
follow a target trajectory.

3 Calibration with Star Camera
This section covers the three steps that are required to calibrate
the parameters of the pointing model. These steps consist of an
intercamera alignment procedure, a coarse calibration parameter
fit, and a fine calibration parameter fit.

3.1 Intercamera Alignment

The purpose of the intercamera alignment procedures is to iden-
tify the location of the telescope boresight in the star camera.
This allows calibration with the star camera to be used to
guide a signal through the primary aperture. A distant source
(e.g., a bright terrestrial light or a star) is centered in the primary
detector and also captured with the star camera. The centroid of
the target in the star camera provides a unit vector in the ST
frame, rteljOBS, which represents the boresight of the telescope.

3.2 Coarse Calibration

Coarse calibration provides an initial state estimate for fine
calibration. It utilizes a series of star camera measurements as
modeled in Eq. (1). For coarse calibration, several assumptions
are made. Measurement noise is ignored, vertical deflection is
ignored (i.e., the deflection coefficient ad is assumed to be zero),
and the rotation axis nonperpendicularity θNP is assumed to be
zero, such that GIMqMNTðtÞ is known from the encoder output.
Under these assumptions, the remaining unknowns in Eq. (1) are
STqGIM and MNTqENU, which must be estimated.

The i’th star camera measurement in the form of OBSqJ2K;i is
multiplied by known transformations into the form STqENU;i.
Given an i’th and j’th measurement, they can be used to esti-
mate STqGIM with the following:
EQ-TARGET;temp:intralink-;e027;63;368

STqENU;i ⊗ STq−1ENU;j ¼ STqGIM ⊗ GIMqMNT;i

⊗ GIMq−1MNT;j ⊗ STq−1GIM: (27)

Using the quaternion property in Eq. (51), Eq. (27) can be
written as follows:
EQ-TARGET;temp:intralink-;e028;63;295

STqENU;i ⊗ STq−1ENU;j ¼
�
AðSTqGIMÞ 0

0 1

�
GIMqMNT;i

⊗ GIMq−1MNT;j: (28)

By pairing star camera measurements to calculate the qua-
ternions in Eq. (28), the problem transforms into one of attitude
determination given a set of vector measurements. A method
of determining attitude from vector measurements such as
QUEST10 can then be applied to estimate STqGIM.

Similarly, MNTqENU can be estimated from
EQ-TARGET;temp:intralink-;e029;63;164

STq−1ENU;i ⊗ STqENU;j ¼
�
AðMNTq−1ENUÞ 0

0 1

�
GIMq−1MNT;i

⊗ GIMqMNT;j: (29)

These coarse estimates of STqGIM and MNTqENU are used to
proceed to fine calibration.

3.3 Fine Calibration

Fine calibration uses a least squares approach with the initial
state supplied by coarse calibration. There are eight unknown
parameters to be estimated. The error state is given by

EQ-TARGET;temp:intralink-;e030;326;701δx ¼ ½ δad STδQGIM δθNP
MNTδQENU �T: (30)

The vector portion of the error quaternion of the star camera
measurements from Eq. (1) can be approximated to first order as
follows:
EQ-TARGET;temp:intralink-;e031;326;637

OBSδQJ2K;i ≈ Qn;i þ OBSδQST;i þ AðOBSqST;iÞSTδQGIM

þ AðOBSq̂GIM;iÞGIMδQMNT;i

þ AðOBSq̂MNT;iÞGIMδQENU: (31)

In Eq. (31), STδQGIM and MNTδQENU are components of
the state, but OBSδQST;i and GIMδQMNT;i must be related back to
the state components.

Equations (2)–(5) define the rotation between the MNT and
the GIM. With these equations and utilizing the quaternion
property in Eq. (51), the error quaternion GIMδqMNT;i is given by

EQ-TARGET;temp:intralink-;e032;326;504

GIMδqMNT;i ¼ δqNP ⊗
�
Aðq̂NP ⊗ qalt;i ⊗ q̂−1NPÞ 0

0 1

�
δq−1NP:

(32)

The vector portion of the error quaternion from Eq. (32)
can be approximated to first order as follows:

EQ-TARGET;temp:intralink-;e033;326;423

GIMδQMNT;i ≈ ðI3×3 − Aðq̂NP ⊗ qalt;i ⊗ q̂−1NPÞÞδQNP: (33)

Finally, δqNP must be related to δθNP from the state.
To first order, the vector portion of δqNP can be approximated
as follows:

EQ-TARGET;temp:intralink-;e034;326;358δQNP ≈
�
0 0 −δθNP∕2

�
T: (34)

Combining this result with Eq. (33) yields the overall
approximation:
EQ-TARGET;temp:intralink-;e035;326;305

GIMδQMNT;i

≈
1

2

�
Aðq̂NP ⊗ qalt;i ⊗ q̂−1NPÞ − I3×3Þ

��
0 0 1

�
TδθNP:

(35)

Returning to Eq. (31), OBSδQST;i must be related to the state
components. Equations (6) and (7) describe the rotation from
the ST to the OBS. The error quaternion from the star camera
to the OBS at the i’th measurement is as follows:

EQ-TARGET;temp:intralink-;e036;326;188

OBSδqST;i ¼
�
sinðδad cosðαobs; iÞ∕2Þvd;i
cosðδad cosðαobs; iÞ∕2Þ

�
; (36)

where αobs;i is the measured altitude from the i’th star camera
image. The vector component is approximated as follows:

EQ-TARGET;temp:intralink-;e037;326;123

OBSδQST;i ≈
1

2
cosðαobs;iÞvd;iδad: (37)

Overall, combining Eqs. (31), (35), and (37) yields a lineari-
zation of the form:
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EQ-TARGET;temp:intralink-;e038;63;587

OBSδQJ2K;i ¼ Hiδxi þQn;i; (38)

where Hi is a matrix of partial derivatives and δxi is the state
correction. The matrix Hi is composed of

EQ-TARGET;temp:intralink-;e039;63;542Hi ¼
�
∂OBSδQJ2K;i

∂δad
∂OBSδQJ2K;i

∂STδQGIM

∂OBSδQJ2K;i

∂δθNP

∂OBSδQJ2K;i

∂MNTδQENU

�
; (39)

with partial derivatives given by

EQ-TARGET;temp:intralink-;e040;63;489

∂OBSδQJ2K;i

∂δad
≈
1

2
cosðαobs;iÞvd;i; (40)

EQ-TARGET;temp:intralink-;e041;63;440

∂OBSδQJ2K;i

∂STδQGIM

≈ AðOBSq̂ST;iÞ; (41)

EQ-TARGET;temp:intralink-;e042;63;401

∂OBSδQJ2K;i

∂δθNP
≈
1

2
AðOBSq̂GIM;iÞðAðq̂NP ⊗ q̂alt;i ⊗ q̂−1NPÞ− I3×3Þ

⋅ ½ 0 0 1 �T; (42)

EQ-TARGET;temp:intralink-;e043;63;351

∂OBSδQJ2K;i

∂MNTδQENU

≈ AðOBSq̂MNT;iÞ: (43)

Multiple measurements can be combined into an iterative
nonlinear least squares process. For n measurements, the meas-
urement errors are related to state errors as follows:
EQ-TARGET;temp:intralink-;e044;63;2802
6664

OBSδQJ2K;1

..

.

OBSδQJ2K;n

3
7775 ¼

2
664
H1

..

.

Hn

3
775δxk þ

2
664
Qn;1

..

.

Qn;n

3
775: (44)

This equation is of the form:

EQ-TARGET;temp:intralink-;e045;63;199δyk ¼ Hδxk þ ω; (45)

where k is the iteration number and the covariance of ω is
a diagonal matrix R which corresponds with the measurement
noise covariance. Using iterative least squares, the state update
is given by

EQ-TARGET;temp:intralink-;e046;63;126δxk ¼ ðHTR−1HÞ−1HTR−1δyk: (46)

The quaternions STq̂GIM and MNTq̂ENU are updated with
a quaternion product and the state components θ̂NP and âd are

updated additively. Iterations continue until the estimate con-
verges on a solution.

4 Results
This section covers results from testing the pointing model and
calibration approach developed in Secs. 2 and 3 on a very low-
cost telescope. Pointing performance is strongly dependent on
hardware, so these results are meant to be taken as an example
application rather than as a lower or upper bound on perfor-
mance. Figure 2 shows the steps that take the telescope from
a state of storage to ready-to-track in less than 30 min.

4.1 Setup

We tested the calibration algorithm on the Portable Telescope for
Lasercom,7 as shown in Fig. 3. The hardware consists of a tele-
scope with an externally mounted star camera and a camera

Fig. 2 Block diagram showing the steps from telescope deployment to ready-to-track. Manual steps are
shown in blue and automated steps are shown in green. The calibration steps take ∼15 min plus an
additional 10 min to set up a low-cost telescope. The telescope is ready-to-track in less than 30 min.

Fig. 3 Portable Telescope for Lasercom (PorTeL) deployed on the
roof of MIT building 37 in Cambridge, Massachusetts. The star cam-
era can be seen mounted on top of the telescope.
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behind the telescope. The telescope is a Celestron CPC1100,
a popular hobbyist telescope with an 11” (28 cm) aperture
and an altazimuth mount. The star camera mounted to the tele-
scope is a low-cost iNova PLB-Mx2 CMOS camera. A 35-mm
focal length lens with a 25-mm aperture is paired with the
camera, resulting in a field-of-view (FoV) of 7.8 deg× 5.9 deg
and a plate scale of 22 arc sec ∕pixel. The camera behind
the telescope is a Sensors Unlimited Micro SWIR 320CSX.
It is an InGaAs camera with an 4.0 × 3.2 mm2 active area.
Coupled with the telescope, the full FoV of the detector is
591 × 473 arc sec2 and the plate scale is 0.92 arc sec ∕pixel.
The telescope, star camera, and back-end camera are controlled
from a Dell Precision M4800 laptop. A graphical user interface
developed in Visual Studio is used to control the session, and
the software is implemented in a combination of C, C++,
and C#. During setup, no effort is put toward leveling the
telescope or setting the start position, as these parameters are
determined in software.

4.2 Calibration Results

The results presented in this section were acquired on February
14, 2018, between the hours of 23:48 to 23:59 UTC from the
roof of an MIT building, as shown in Fig. 3. The calibration
procedure took a total of 11 min. To calibrate the pointing
model, 24 star camera images were taken at points equidistrib-
uted across the sky above 20-deg altitude. Figure 4 shows the
locations of the calibration points on a 2-D projection of the sky.

Images were taken with 300-ms exposure and star identifi-
cation (ID) was performed on each image using a correlation-
based pattern matching algorithm developed by Yoon et al.11,12

An image is excluded from the calibration set if fewer than six
stars are identified or if the ID score, as described in Ref. 12, is
below a threshold of 30, determined empirically.

Table 1 summarizes the results of the star camera images.
The azimuth and altitude from the telescope encoders are listed,
followed by the number of stars identified and the star ID RMS
residual. Once the stars are identified, their vector is known in
the J2000 frame from a star catalog. The vectors in the star

camera frame are determined from the image, and QUEST10

is used to estimate a rotation between the two frames. Using
this estimate, the predicted vectors in the star camera are
compared to the measured star vectors to calculate the residuals.
The RMS of the residuals provides a metric to assess the
accuracy of each image measurement, which ranges from
2 to 8 arc sec within this dataset.
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Fig. 4 The 24 calibration points projected on a bird’s-eye view of a
unit hemisphere. The calibration points are calculated to be approx-
imately equidistributed above 20-deg altitude. The points are num-
bered in the order in which they are executed.

Table 1 Results from star camera images for pointing model calibra-
tion taken on February 14, 2018, between the hours of 23:48 to 23:59
UTC. Azimuth and altitude are listed for each calibration image
followed by the number of stars identified, the residual of the star
identification, and the azimuth and altitude residuals in the pointing
model calibration.

#
Azi
(deg)

Alt
(deg)

Stars
ID’d

ID RMS res.
(arc sec)

Calibration res.

Azi
(arc sec)

Alt
(arc sec)

1 12.93 29.37 12 4.3 −38 4

2 45.21 38.50 13 2.2 −25 −46

3 70.29 53.84 9 3.5 −26 4

4 77.12 31.48 11 3.6 −26 13

5 102.87 31.48 8 3.3 11 25

6 109.70 53.84 12 2.8 19 30

7 134.78 38.48 11 3.6 a a

8 167.06 29.37 12 3.8 136 −201

9 161.30 52.50 9 3.7 a a

10 136.26 73.61 13 6.3 −7 −13

11 43.73 73.60 6 2.9 a a

12 18.69 52.52 10 2.6 23 −37

13 347.06 29.37 12 3.3 −23 1

14 314.78 38.50 12 2.2 −38 −13

15 289.70 53.84 12 4.2 −11 13

16 282.87 31.48 8 2.3 −36 26

17 257.12 31.48 9 2.6 −31 41

18 250.29 53.84 13 2.4 −4 31

19 225.21 38.50 10 5.3 14 21

20 192.93 29.37 13 8.0 28 53

21 198.69 52.52 13 3.0 33 52

22 223.73 73.61 8 4.6 10 18

23 316.26 73.61 10 5.1 −6 −16

24 341.30 52.52 11 3.7 −2 −3

Overall RMS 27 37

aExcluded due to low star identification score.
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The final two columns of Table 1 show the azimuth and alti-
tude residuals of each image within the overall pointing model
following the approach described in Sec. 3. Three images (#7,
#9, and #11) are excluded from the pointing model calibration
due to low star ID scores. Image #8 appears to be an outlier, but
it has a strong identification score and it is more likely that the
calibration is skewed slightly by the exclusion of images #7 and
#9 near it (see Fig. 4). The accuracy of the overall calibration
was 27 arc sec RMS in azimuth and 37 arc sec RMS in altitude.

Residuals from the 21 images included from calibration are
shown in Fig. 5. A trend can be seen between altitude and rota-
tion about the star camera Z-axis (rotation around boresight), but
otherwise the residuals do not contain any clear trends. Rotation
of the star camera about the Z-axis only has a small coupling to
the telescope line-of-sight (if the star camera and telescope were
coaligned perfectly, there would be no coupling), so residuals in
the Z-axis are of less importance than the other axes.

The pointing model parameters determined from the calibra-
tion are summarized in Table 2. The parameters indicate that

the initial telescope setup was imperfect: the starting altitude
was −1.24 deg and the mount was misleveled by 1.06 deg.
These errors can be conveniently identified and corrected in
software rather than manually.

The vertical deflection coefficient is negative, indicating
that the telescope tends to pitch up when it is near the horizon.
This is likely due to a mass imbalance caused by instrumen-
tation on the back of the telescope, which exacerbates
an imbalance already observed with no instrumentation.
A counterbalancing weight has been added to the front of
the telescope but this approach is imprecise. The calibration
also shows that there is a nonperpendicularity of 0.19 deg
between the gimbal axes. While a single calibration set is pre-
sented here, the calibration procedure has been conducted with
this telescope 14 times with similar results and stable estimates
for the nonperpendicularity.

4.3 Star Pointing Results

To test the accuracy of the calibration procedure, 15 bright stars
were measured through the main aperture between 00:14 and
00:42 UTC on the same night. Table 3 lists the pointing accu-
racy for these stars based on their location in the primary
detector behind the telescope. The telescope tracked the stars
at sidereal rate for each measurement. We consider pointing
accuracy rather than tracking accuracy because the observations
were less than a minute each. The accuracy was 53 arc sec RMS
in azimuth and 66 arc sec RMS in altitude. As expected, these
errors are worse than the 27 arc sec RMS and 37 arc sec RMS
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Fig. 5 Residuals from pointing model calibration in the star camera
frame plotted against azimuth and altitude. Data acquired on
February 14, 2018 between the hours of 23:48 to 23:59 UTC.

Table 2 Pointing model parameter values as calculated from calibra-
tion. Data acquired on February 14, 2018, between the hours of
23:48 to 23:59 UTC.

Parameter Value Description

STq̂GIM

2
664
0.00365
−0.0102
−0.9999
0.0052

3
775

Rotation between GIM and ST
determines telescope “zero” position,
which is at an ENU azimuth of
298.8 deg and altitude of −1.24 deg

MNTq̂ENU

2
664

0.1670
−0.6877
0.6834
−0.1794

3
775

Rotation between MNT and ENU frame,
indicating that the mount is misleveled
by 1.06 deg

âd −8.59 × 10−4 Vertical deflection coefficient
resulting in maximum deflection of
177 arc sec on horizon

θ̂NP 0.19 deg Gimbal axis nonperpendicularity

Table 3 Star pointing results acquired between the times of 00:14 to
00:42 UTC on February 15, 2018.

# Star name Azi err. (arc sec) Alt err. (arc sec)

1 Sirius 32 −45

2 Betelgeuse −35 −47

3 Aldebaran −18 −98

4 Procyon −22 −24

5 Rigel −49 −63

6 Pollux −45 37

7 Mirach −39 −92

8 Scheat 30 −59

9 Dubhe 55 73

10 Menkar −7 −70

11 Algieba 89 52

12 Almach −32 −13

13 Wezen 113 −28

14 Rho Persei −64 −101

15 Mirfak −63 −96

Overall RMS 53 66
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error of the calibration procedure. A penalty is paid for calibrat-
ing with the star camera rather than the primary aperture.

In Fig. 6, the errors for each star are plotted against the ENU
azimuth and altitude of the observation. A linear trend can be
seen between the altitude error and the ENU azimuth. This
could indicate a small error in fitting the calibration parameters.
There could also be a shift in the mount orientation over time
due to the fact that it is not rigidly mounted on a concrete pier,
for example. The pointing accuracy is good for this class of tele-
scope, and the primary benefit of this approach is rapid setup
that avoids manual prealignment. In comparison, the built-in
calibration procedure for the CPC1100 tested on a different
night with careful manual deployment yielded accuracies from
100 to 900 arc sec for each star.

While using a star camera allows for fast calibration, there
are disadvantages to not using the primary aperture. Any mis-
alignment between the star camera and telescope boresight as a
function of attitude is ignored in our procedure. For very precise
pointing, this will limit the performance. If additional precision
is desired, a combination of star camera measurements and
measurements from the camera behind the telescope can be
used to fit the pointing model. This will increase the time
required to calibrate for each additional measurement, but it still
retains the benefit of eliminating assumptions about nominal
orientation.

5 Conclusion
In telescope pointing calibration, there is a tradeoff between
speed and accuracy. Most pointing models also make assump-
tions about the nominal orientation of the telescope, which
requires manual correction and recalibration if the telescope

is too far off of nominal. To enable rapid calibration while
maintaining high accuracy, we presented a quaternion-based
pointing model tailored for use with a star camera. The calibra-
tion approach is completely agnostic to the initial orientation of
the telescope/mount so that no manual alignment (e.g., leveling)
is needed and even the type of telescope (e.g., altazimuth or
equatorial) does not need to be specified. The gimbal angle
and rate commands to track a target were derived analytically
from the pointing model.

The calibration procedure was tested using a very low-cost
telescope. Pointing model parameters were fit from a series of
star camera images taken during the 15-min calibration pro-
cedure. Results of the calibration were presented, indicating
that there were multiple “errors” in the deployment of the
telescope: the mount was misleveled by 1.06 deg, had a zero-
altitude position 1.24 deg below the horizon, and the gimbal
axes showed a 0.19 deg nonperpendicularity. These errors
were compensated for in software and the pointing model accu-
racy was tested by pointing at 15 stars across the sky. The overall
star pointing accuracy was 53 arc sec RMS in azimuth and
66 arc sec RMS in altitude. The results support the utility
of the calibration approach developed in this work that com-
promises between speed and accuracy, particularly for low-
cost telescopes.

Appendix: Quaternion Conventions
This appendix defines the quaternion conventions, notation, and
relevant equations used in the pointing model derivation.
Reference 13 provides additional detail on quaternions.

Any rigid-body rotation in three-dimensional space can be
represented by a single rotation of angle θ about a fixed axis
v known as the Euler axis. A quaternion can be defined from
these terms as follows:

EQ-TARGET;temp:intralink-;e047;326;376q ¼
�
sinðθ∕2Þv
cosðθ∕2Þ

�
: (47)

The vector and scalar components of a quaternion q are
represented as follows:

EQ-TARGET;temp:intralink-;e048;326;308q ¼
�
Q
q

�
; (48)

with the vector component Q appearing before the scalar
component q.

With this convention, multiplication of quaternion p by
quaternion q is given by

EQ-TARGET;temp:intralink-;e049;326;217p ⊗ q ¼
�
pQþ qP − P ×Q

pq − P · Q

�
: (49)

The notation used for the direction cosine matrix correspond-
ing to a quaternion is AðqÞ, which can be calculated by

EQ-TARGET;temp:intralink-;e050;63;125

AðqÞ ¼

2
64
q2 þQ2

0 −Q2
1 −Q2

2 2ðQ0Q1 þ qQ2Þ 2ðQ0Q2 − qQ1Þ
2ðQ0Q1 − qQ2Þ q2 −Q2

0 þQ2
1 −Q2

2 2ðQ1Q2 þ qQ0Þ
2ðQ0Q2 þ qQ1Þ 2ðQ1Q2 − qQ0Þ q2 −Q2

0 −Q2
1 þQ2

2

3
75: (50)
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Fig. 6 Star pointing error plotted against ENU azimuth and altitude of
the observation. Data acquired between the times of 00:14 to 00:42
UTC on February 15, 2018.
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A relationship between two quaternions p and q that is
frequently used in this work is given by

EQ-TARGET;temp:intralink-;e051;63;730q ⊗ p ⊗ q−1 ¼
�
AðqÞ 0

0 1

�
p: (51)

The current estimate of a quaternion has an error of δq,
such that the true quaternion q is given by

EQ-TARGET;temp:intralink-;e052;63;664q ¼ δq ⊗ q̂; (52)

where q̂ is the quaternion estimate.
Quaternions are generally written to explicitly note the refer-

ence frames as AqB, which represents a rotation from frame B to
frame A.
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