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Abstract. Planar cameras with high performance and wide field of view (FOV) are critical in various fields,
requiring highly compact and integrated technology. Existing wide FOV metalenses show great potential for
ultrathin optical components, but there is a set of tricky challenges, such as chromatic aberrations correction,
central bright speckle removal, and image quality improvement of wide FOV. We design a neural meta-camera
by introducing a knowledge-fused data-driven paradigm equipped with transformer-based network. Such a
paradigm enables the network to sequentially assimilate the physical prior and experimental data of the
metalens, and thus can effectively mitigate the aforementioned challenges. An ultra-wide FOV meta-
camera, integrating an off-axis monochromatic aberration-corrected metalens with a neural CMOS image
sensor without any relay lenses, is employed to demonstrate the availability. High-quality reconstructed
results of color images and real scene images at different distances validate that the proposed meta-
camera can achieve an ultra-wide FOV (>100 deg) and full-color images with the correction
of chromatic aberration, distortion, and central bright speckle, and the contrast increase up to 13.5 times.
Notably, coupled with its compact size (< 0.13 cm3), portability, and full-color imaging capacity, the neural
meta-camera emerges as a compelling alternative for applications, such as micro-navigation, micro-
endoscopes, and various on-chip devices.
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1 Introduction
Conventional cameras are renowned for their large imaging field
of view (FOV) and unparalleled image quality. Due to the use of
complex optical components for aberrations correction, it has a
bulky architecture and faces the challenges of high-precision
alignment. With the advancement of technology, the miniaturi-
zation, light weight, and portable cameras1–3 are increasingly
desired in autonomous driving, endoscopic medicine, and con-
sumer electronics. Therefore, there is an urgent need for planar
and high-performance optical components to implement wide
FOV on-chip cameras.

Recently, metalenses composed of subwavelength artificial
structures have garnered attention for their compactness, as po-
tential alternatives to bulky and complex optical instruments.4–9

The metalens exhibits superior optical performance due to its
ability to precisely manipulate the incidence beam;10–15 however,
aberrations correction still remains a challenge, in particular for
chromatic aberration and off-axis monochromatic aberration. To
eliminate chromatic aberration, the dispersive propagation
phase and dispersive-free geometric phase have been introduced
to achieve broadband16–19 and multiwavelength20–22 achromatic
metalenses. Due to the limitation of the group delay dispersion
of meta-atoms, achromatic metalenses are usually implemented
on the paraxial condition. In the off-axis case, a great deal of
effort has been made to correct the off-axis monochromatic
aberrations of the metalens. By introducing the ray-tracing
method,23–27 Fourier analysis,28 and metalens array,29 cascaded
metalenses located on either side of the substrate23–25 and single
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wide FOV metalens with an aperture26,27 can correct off-axis
monochromatic aberrations and achieve diffraction-limited
imaging over a wide FOV. However, chromatic aberration cor-
rection, central bright speckle, and image quality improvement
of wide FOV metalens in the off-axis case are rarely considered.
Obviously, addressing the aforementioned issues of wide FOV
metalenses that rely on the above existing methods remains a
considerable challenge.

To improve the image quality of a metalens, traditional im-
age restoration computational imaging methods2,22,30–32 are in-
troduced, and they usually recover images based on simple
hypotheses or enhance images through multiple-image super-
resolution.2,22,30 However, the factors influencing the imaging
quality of current ultra-wide FOV metalenses are intricate,
making it difficult to improve the imaging quality based on
a single hypothesis. In recent years, several methods have been
proposed to incorporate neural networks for improving the im-
aging quality of metalenses or diffractive optical elements,
which use point spread functions (PSFs) to train models.33–37

Unfortunately, single-wavelength ultra-wide FOV metalenses
have complex PSF spatial variations in different incident an-
gles at other non-designed wavelengths, which makes it fail to
accurately model the imaging degradation by applying the
above PSF method. Even worse, the central bright speckle in-
dicates that there is inconsistency between the simulation data
and the actual scene, which makes it more difficult to improve
the imaging quality of ultra-wide FOV metalenses by the prior
PSF method.

With the advancement of deep-learning38 research, trans-
former modules based on attention mechanisms have been
developed and demonstrated to be effective in cutting-edge stud-
ies, such as AlphaFold2,39 GPT,40 and large image-text models.
Compared to CNN networks constructed with local convolu-
tional kernels, the multi-head self-attention mechanism enables
the transformer module to effectively model long-range depend-
encies, which is conducive to better modeling of wide FOVmet-
alenses’ non-focused diffusion spots and information expansion
problems. It is expected that incorporating transformer method-
ology into wide FOV metalens imaging is a good choice to cope
with more complex PSF spatial variations so as to largely im-
prove the quality of imaging.

In this work, we demonstrate a highly miniaturized neural
meta-camera in conjunction with an ultra-wide FOV metalens as-
sembled on a CMOS image sensor. The proposed metalens has a
full FOVof nearly 140 deg and achieves a diffraction-limited res-
olution of up to 1.55 μm at the center of the image side. The vol-
ume of neural meta-camera is 9.07 mm × 9.07 mm × 1.57 mm,
which is integrated based on precision assembly platform.

Based on this meta-camera, we propose the knowledge-fused
data-driven (KD) paradigm to address the image degradation
problem. The KD paradigm is characterized by first initializing
the transformer-based neural network using unsupervised PSF
estimation, and then further fine-tuning the neural network us-
ing the data obtained from the meta-camera. In this way, a cus-
tomized neural network can be trained to recover a range of
imaging quality problems for the ultra-wide FOV metalens.
The experiments on simple, cartoon, and complex scene images
validate that our method solves the chromatic aberration, distor-
tion, and central bright speckle of the meta-camera. Our work
shows that the neural meta-camera can achieve ultra-wide FOV
and full-color imaging, which is also difficult to obtain with
conventional complex cameras.

2 Methods

2.1 On-Chip Neural Meta-Camera Model

Here, we demonstrate a miniature neural meta-camera for ultra-
wide FOV and full-color imaging supported by a transformer-
based image recovery neural network (Fig. 1). The network has
a typical multiscale attention architecture and is trained under
the guidance of the KD paradigm so as to improve the recon-
structed image quality. As identified by yellow arrows in Fig. 1,
the paradigm includes prior knowledge from simulated PSFs
and data-driven measurements from the meta-camera, incorpo-
rating prior and measured dataset to initialize and fine-tune the
network. On the other hand, the processing flow of the image
recovery neural network follows the green arrows in Fig. 1. The
images captured from the ultra-wide FOV meta-camera are
reconstructed into ground-truth-like full-color images by the
recovery neural network. With the help of the computility of
the graphics processing units (GPUs), the model can conven-
iently repair the chromatic aberration, distortion, stray speckles,
and background noise of the meta-camera.

2.2 Design Principle of the Ultra-Wide FOV Metalens

Recently, some approaches have been proposed for aberration
correction and fast design of metasurfaces, such as hyperbolic
phase profile,12–15 quadratic phase optimization based on ray
tracing,25–27 gradient-based local optimization,21 inverse de-
sign,41–43 and combination of deep neural networks.33–37,41–44

Here, in order to obtain ultra-wide FOV and accurate off-axis
aberration correction on a CMOS image sensor plane [Fig. 2(a)],
the phase profile of a 140 deg wide FOV metalens is optimized
by the ray-tracing method.25–27 Such a metalens is composed of
a 220-μm-diameter aperture and a 1.54-mm-diameter metasur-
face that are located on both sides of a 0.7-mm-thick fused silica
substrate, with an effective numerical aperture of 0.167 and an
operating wavelength of 532 nm. The fact that the root mean
square spot diagrams [right of Fig. 2(a)] on the sensor plane at
different angles of incidence are all within the radius of Airy
disks indicates the metalens’s diffraction-limited performance
with negligible monochromatic aberrations. We further simulate
the alphabet image to illustrate good imaging performance in
the whole FOV with clearly distinguishable alphabet letters
[Fig. S1(a) in the Supplemental Material].

The metasurface contains Si nanoposts with different diam-
eters arranged in quadrilaterals and covered by a 1-μm-thickness
silicon dioxide protective layer. The phase coverage of 2π can
be well achieved in seven selected nanoposts, with the average
of over 95% transmission at normal incidence and decreasing
value in off-normal directions. Note that the phase will shift
accordingly when the incidence light is oblique. See more
details in angle-dependent phase and transmission maps by rig-
orous coupled wave analysis45 in Figs. S1(b) and S1(c) in the
Supplemental Material. We emphasize the fact that the simu-
lated modulation transfer function (MTF) curves of the metalens
at different incident angles are very close to the diffraction limit
case [Fig. 2(b)], demonstrating the effectiveness of the metalens
for aberration correction over a wide full FOV. At different
incidence angles, the simulated focusing efficiency of the
metalens is 31.5% to 66.25% and decreases with the increase
of incident angle due to the phase shift and nonuniform trans-
mittance of nanoposts as the incident angle changes [Figs. S1(b)
and S1(c) in the Supplemental Material].
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2.3 Demonstration of the Ultra-Wide FOV Metalens

The ultra-wide FOV metalens is fabricated by electron beam
lithography and inductively coupled plasma-chemical vapor
deposition. The aperture and metasurface are aligned through
alignment marks patterned on both sides of a substrate (Fig.
S2 in the Supplemental Material). Top-view scanning electron
microscope (SEM) images of the fabricated metasurface high-
light the excellent fabrication quality [Fig. 2(c)].

To evaluate the optical performance of the naked ultra-wide
FOV metalens sample, we used an experimental setup that en-
ables the metalens to focus a collimated light from different an-
gles, and the focused spots to go into a rear microscopic system
[Fig. S3(a) in the Supplemental Material]. One can see from
Fig. 2(d) that the measured focal lengths (blue solid box) and
the image heights (red solid box) are close to the simulations
(dotted lines) from 0 deg to 70 deg at a center wavelength of
532� 5 nm. Note that the image height is defined as the offset
position of focal PSFs from the optical axis center in the focal
plane. The results show the capability of the metalens for a full
FOV angular position, ensuring the accurate match between the
metalens imaging plane and the CMOS image sensor. In addi-
tion, we compare the simulated and measured focal spots, full
width at half-maximum values, and corresponding MTF curves
of different incidence angles. More details can be found in
Fig. S3 in the Supplemental Material.

To characterize the imaging resolution capability of the de-
signed metalens, we use the measurement configuration shown
in Fig. S4(a) in the Supplemental Material. The USAF 1951
resolution test chart is illuminated by the lamp with different
narrowband filters, and the images can be captured by the mi-
croscopic system, including an objective lens, an adapter tube
lens, and a CMOS sensor. The resolution test chart is fixed on
the image plane, and the microscopic system moves along the
optical axis to make the image clear. Figure 2(e) shows the pro-
jected images of the USAF 1951 resolution test chart at the
angle of 0 deg and a center wavelength of 532 nm. The line-
width and gap in the vertical lines (yellow) and horizontal lines
(orange) of element 3 in group 8 are clearly distinguished, and
the corresponding contrast values are 35.9% and 37.5%, respec-
tively [right side of Fig. 2(e)]. The contrast value is the ratio of
the difference and sum of the maximum and minimum inten-
sities. The contrast values are all above 20%, indicating that
the resolution of the metalens in the center is 1.55 μm close
to the diffraction-limited resolution (λ∕2NA). The resolution
results at wavelengths ranging from 488 to 680 nm are also
shown in Fig. S4(b) in the Supplemental Material. We observe
that the central field resolution of the ultra-wide FOV metalens
is close to the diffraction limit at a single wavelength in the
visible band.

To further characterize the wide FOV imaging capability, we
select the number “7” of the USAF 1951 resolution test chart for

Fig. 1 Neural meta-camera model. The meta-camera consists of the ultra-wide FOV metalens
and the transformer-based neural network for full-color imaging. Green arrows show the process
of image recovery. The captured image from the meta-camera is reconstructed by the image
recovery neural network constructed by the KD paradigm (yellow arrows, prior knowledge and
data-driven). The neural network is initialized by the prior data set from the simulated PSFs of
the metalens, and then the measured data set from meta-camera is input to drive the refinement
of the initialized neural network. To capture information at multiscale, we use U-shaped hierar-
chical neural networks. Considering the spatial distribution characteristics of the simulated
PSFs from the metalens, the U-shaped network with an attention mechanism is adopted to cope
with its nonuniformity.
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imaging. By changing the filters and turning the rotary stage, the
images with projection angles from 0 deg to 70 deg can be cap-
tured at different wavelengths. When the angle of the rotary
stage is 65 deg, the projected image of the number 7 reflects
the angle range of about 63 deg to 70 deg. Figure 2(f) shows
the projected images of the number 7 with projection angles of
0 deg, 10 deg, 20 deg, 30 deg, 40 deg, 50 deg, and 65 deg at the
wavelength of 532 nm. The contours of the number 7 can be
easily identified in the projected images at all angles, confirming

the wide FOV imaging performance of the metalens. Additional
experimental images of the number 7 at other wavelengths are
shown in Fig. S4(c) in the Supplemental Material. Note that the
distorted image with a projection angle greater than 40 deg is the
inherent distortion of all wide FOV imaging systems, and it can
be corrected by mature algorithms. As a result, the wide FOV
imaging ability of the ultra-wide FOV metalens is confirmed by
clearly demonstrating the projection imaging in the range of
0 deg to 70 deg half-FOV.

Fig. 2 Ray optics design and characterization of the ultra-wide FOV metalens. (a) Ray-tracing
simulation results of ultra-wide FOV metalens (left) of 140 deg. The red/green/blue/yellow rays
have four crossing points at the same image plane passing through the aperture, substrate, meta-
surface, and cover glass of sensor. Spot diagrams (right) show the diffuse spots with the incident
angles of 0 deg, 20 deg, 40 deg, and 70 deg are located inside the Airy circle (black solid).
(b) Simulated MTF curves at different FOVs and the black solid line indicate the diffraction limit.
Schematic of a meta-atom of the metasurface, consisting of a silicon nanopost with the height (H1)
of 265 nm and a silicon dioxide protective layer with thickness (H2) of 1 μm on a silica substrate.
The nanoposts with varying diameters (D) are arranged in a square lattice with the lattice constant
(S) of 220 nm. (c) Top-view SEM images of the metalens with different scales. (d) Simulated and
measured focal length and image height of spots at different FOVs. (e) Projected images of
the USAF 1951 resolution test chart at wavelengths of 532 nm. The corresponding intensity dis-
tributions of vertical lines (yellow) and horizontal lines (orange) of the element 3 from group 8
displayed a linewidth of 1.55 μm. (f) Image of the number 7 in different incident angles at the
wavelength of 532 nm.
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2.4 KD Paradigm with Transformer-Based Network

Due to its self-attention mechanism design, the transformer
module can capture longer distance context relationships, which
can be interpreted as a global relationship modeling for image
processing tasks.46 In the design of the ultra-wide FOV metalens
at single-wavelength, PSFs of other wavelengths often suffer
from severe mass loss, manifesting in the form of unconcen-
trated energy distribution, unfocused diffuse spots (Fig. S5 in
the Supplemental Material), etc. These problems make the mod-
eling of ultra-wide FOV metalens imaging more difficult for
neural networks, and previous work has used traditional neural
network architectures;47 however, the existing methods are still
struggling to deal with such complex degradations. Fortunately,
the transformer-based networks can handle the complex degra-
dation described above for the ability of modeling long-distance
dependencies.

In addition to the network structure, we point out that the
training paradigm is also crucial. Considering the incomplete-
ness of the theoretical simulation of the imaging process and the
difference between theory and actual fabrication, the distortion
and central bright speckle of the ultra-wide FOV metalens in the
visible spectrum imaging hinder learning an effective model
based on the pure theoretical approximation. Recent research
has shown that deep-learning models trained at a large scale on

similar tasks can learn transferable domain knowledge, so that
it can be adapted to downstream tasks by a transfer learning
manner.48 Therefore, we propose a two-stage paradigm to train
a transformer network to recover the chromatic aberrations,
distortion, and central bright speckle in the metalens imaging.

Figure 3 shows the proposed KD paradigm, including two
stages: prior knowledge and data-driven. In the first stage shown
in Fig. 3(a), we leverage the prior knowledge of metalens design
to initialize the model with design parameters of the metalens in
an unsupervised manner. Then, we perform data-driven learning
to refine our neural network based on the collected real data in
the second stage shown in Fig. 3(b) to drive its performance
close to a conventional commercial lens. We use the same at-
tention-based U-structured neural network49 (right part of Fig. 3)
in both stages, so we can extract multiscale features and ensure
that the recovered images of metalens are semantically consis-
tent at various scales, producing a high-quality image, as ex-
pected. Note that we use the same loss function based on
mean squared error in both stages as well.

Specifically, we first use the theoretical design parameters of
the metalens and the theory of angular spectral propagation to
simulate the PSF sets of the metalens in different FOVs and
wavelengths.33 Since the design of the metalens is circularly
symmetric, it is convenient to rotate these PSFs to obtain
approximate PSFs of full fields collection,

Fig. 3 Proposed KD paradigm for training image recovery neural network. (a) Prior knowledge,
i.e., PSFs, obtained from the design parameters of the metalens is applied to the original images to
generate the prior data set. This prior data set is used to train an initialized neural network. (b) By
utilizing the data collection and processing flow we have established, data from corresponding
scenarios are collected to drive further fine-tuning of the model, enabling it to cope with more
intricate image degradation in actual scenarios. The measured data set in the data-driven scenario
includes images (e.g., LCD screen projection images) captured by the metalens and a conven-
tional commercial lens (Sigma Art Zoom lens). As shown by the black dotted line, the neural
network is updated through backpropagation with the same loss function in both stage (a) and
stage (b). After the model parameters updates of two stages, the neural network is employed
to recover imaging in the corresponding scenario.
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ImageðλÞmeta ¼
X

θ

X

ϕ

maskðθ;ϕ; λÞ⋅

½psfðθ;ϕ; λÞ ⊗ ImageðλÞH�; (1)

where ImageðλÞmeta means simulated image channel corre-
sponding to wavelength λ, maskðθ;ϕ; λÞ and psfðθ;ϕ; λÞ are
the mask and PSF in theory corresponding to FOV θ, rotation
angle ϕ, and wavelength λ, respectively, and ImageðλÞH repre-
sents an image corresponding to wavelength λ to be convolved.
It is worth noting that, compared to previous works that con-
volve images with PSF of a single incident angle at each wave-
length,34 we incorporate the PSF of all incident angles into the
simulation, so that we are able to take into consideration the
strong variations of the PSF at nondesignated wavelengths dur-
ing our modeling. The detailed processing about PSF generation
can be found in Section S3 in the Supplemental Material. Note
that the data set we collected includes the aberration information
of each FOV, so that our initialized neural network can capture
the prior knowledge about the aberration distribution of the im-
aging, allowing the network to achieve faster convergence and
better performance in the second stage.

We use the data-driven approach instead of the measured PSF
set-driven method33,34 in the second stage to circumvent the
following problems. Existing single-wavelength wide FOV
metalenses with a small front aperture have a central bright
speckle problem at nondesigned wavelengths, which becomes
serious with the increase of the incident angle. Unfortunately, so
far there are no accurate theoretical models to estimate the cen-
tral bright speckle. Moreover, the intensity variation and spatial
inhomogeneity of PSFs at different angles of incidence and at
nondesigned wavelengths make it difficult for the measured PSF
set to restore the real image effect. With such large differences in
PSF intensities, the measured PSF set ensemble will have a
greater loss of precision, resulting in a more tedious and arduous
task to measure the PSF set than our data-driven method.

In the second stage [Fig. 3(b)], we build an image acquisition
processing system to efficiently acquire real data for fine-tuning
our model. The image acquisition processing system shots the
images displayed on the LCD screen (Portkeys LH5P II, 5.5″,
1920 × 1080) as the scenes by a conventional commercial lens
(Sigma Art Zoom lens) or metalens, and finally collects the im-
age pair captured by the CMOS sensor (e.g., IMAX 335) and
commercial Sony sensor (e.g., A7M3, Sony), respectively. More
details about this image acquisition processing system can be
found in Section S4 in the Supplemental Material. Section
S5 in the Supplemental Material further describes our data
processing procedures; that is, once the process is established,
it may be possible to cascade data-processing flows and neural
networks to quickly process imaging. The ablation experiments
shown in Section S7 in the Supplemental Material demonstrate
the effectiveness of our method.

In addition, we enhance the model by using the equivariant in
imaging process throughout the experiment by the following
equation:

TðIÞ ¼ Tðpsf⋅IÞ; (2)

where T is a particular transformation, I is the imaged object,
and psf is the PSF corresponding to the one-to-one imaging
process. By utilizing the equivariant of physical processes to

augment data, the model can discover potential physical proper-
ties for better robustness on unseen data.50

3 Results

3.1 Naked Metalens for Neural Imaging

To demonstrate the performance of the ultra-wide FOV metalens
combined with the neural network, we conduct an experimental
comparison by imaging different types of images in the image
acquisition processing system. Considering the trade-off between
data collection cost and recovery effectiveness, we collected 1000
images to validate our approach, 800 as training data and 200 as
test data. As shown in Fig. 4(a), the image data of scenes (e.g.,
projected by the LCD screen) are imaged by the naked ultra-
wide metalens, and then captured by the microscopic system
consisting of a 10× objective (MPLFLN10×BD, Olympus),
an adapter tube lens (1-62922, Navitar), and a CMOS sensor
(A7M3, Sony). Original images captured by the metalens and
corresponding recovery results from our neural networks,
UNet & KD paradigm (UNet trained with KD paradigm), and
other traditional image enhancement algorithms are shown in
Fig. 4(b). Compared with the unrecovered image of the naked
ultra-wide FOV metalens on the leftmost of Fig. 4(b),
the contrast and sharpness of the images restored by the sharp-
ened Laplacian algorithm and the multiscale retinex with color
restoration (MSRCR) algorithm are not improved much, due
to uncorrected background noises. The images recovered by
the UNet & KD paradigm can effectively eliminate the central
bright speckle, but the contrast and sharpness of the images are
not good enough. In contrast, high-contrast and panchromatic
aberration correction images can be recovered by our method
(transform-based neural network trained with KD paradigm).
From the zoom-in images in Fig. 4(b), it is clear that the contrast
of the object’s contour boundaries has been well refined, and the
contour boundaries no longer have color overlay vignetting due
to magnification chromatic aberration. More information on
the comparison of other traditional convolutional networks with
our image recovery neural network (transform-based network) is
provided in Section S8 in the Supplemental Material. Therefore,
our image recovery neural network offers a considerable enhance-
ment in color similarity, contrast, and edge sharpness compared
to traditional algorithms and other traditional convolutional
networks.

3.2 Meta-Camera for Neural Imaging

To demonstrate a proof-of-concept application, we package the
metalens with a CMOS image sensor into a miniature and portable
meta-camera with a volume of 9.07 mm × 9.07 mm × 1.57 mm.
Figure 5(a) shows the photograph of the meta-camera system,
including the diaphragm, sleeve, base, CMOS image sensor
(IMX335, Sony), and core optical element of the wide FOVmetal-
ens. The advancement of our proposed compact integration
approach is that we have built a precision assembly platform to
ensure the integrated camera modules are versatile and practical.
The professional design of the support structure greatly reduces
the complexity and difficulties caused by inclination and eccen-
tricity in assembly. The most critical step in the assembly process
is to ensure that the distance between the metalens sample and the
CMOS sensor is accurate enough. For this purpose, the thread
structure is designed and manufactured between the sleeve and
the base to facilitate precise adjustment of the image clarity of
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the camera module. In addition, to ensure an accurate bond
between the components, we use ultraviolet curing adhesive for
sealing with a curing time of 2 min.

To exhibit the capability of the neural meta-camera, we
placed an LCD screen at different working distances from the
meta-camera so that it could capture images with a large FOV
[Fig. 5(b)]. Following the setting in the metalens demonstration,
we use 800 images for training and 200 images for evaluation.
Figure 5(c) shows the results at a working distance of 2 cm

before and after recovery of the neural meta-camera and the neu-
ral ultra-wide FOV metalens. Compared to the ultra-wide FOV
metalens, the original images captured by the meta-camera
have a more severe central bright speckle and color cast. The
exacerbation of the central bright speckle is due to the burr
and irregular shape of the aperture of the diaphragm caused
by a processing error, while the color cast is derived from the
difference in spectral response curve of CMOS image sensors
between commercial Sony sensor (A7M3) and IMX335.

Fig. 4 Image recovery results of our neural network for images of naked ultra-wide FOV metalens
are compared with results from UNet & KD paradigm and other traditional methods. (a) Schematic
illustration of the data acquisition system for naked ultra-wide FOV metalens. The object projected
by a 5.5-in. LCD screen is collected by the naked ultra-wide FOVmetalens with a working distance
of 2 cm and redirected to a micro-magnification system with an objective lens (Olympus,
MPLFLN10xBD), an adapter tube lens (1-62922, Navitar), and a CMOS sensor (Sony, A7M3).
(b) Compared to UNet & KD paradigm and other traditional image recovery algorithms (e.g.,
MSRCR, Laplacian), our image recovery neural network produces ultra-wide FOV, full-color
and high-quality images corrected for central bright speckle, chromatic aberrations, and distortion.
Examples of recovered images include complex scenes, such as cartoons with orange alphabets,
yellow buses in the shade, and concerts under blue lights. Detail insets are illustrated below each
row. Compared to ground-truth capture (the rightmost column) using a conventional commercial
lens (Sigma Art 24-70mm DG DN), our neural network accurately reproduces fine details and
colors in images. More comparison images (e.g., grids, letters, and oranges) are shown in
Figs. S12–S14 in the Supplemental Material.
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Cartoon images from an alarm clock and a blue bed show that
chromatic aberrations and central bright speckle are greatly im-
proved after recovery through our method. The attention mecha-
nism leads to a wider receptive field, combined with a multiscale
structure, allowing for a more complete removal of global infor-
mation-related bright speckle in a central position. Despite the
images captured by the meta-camera having a stronger bright
speckle than those captured by the ultra-wide FOVmetalens only,
the proposed neural network can still eliminate them. To quanti-
tatively evaluate the performance of the neural meta-camera,
we test a black-and-white target image. The captured images

of the black-and-white target are shown in Fig. 5(d); the image
from the neural meta-camera has no central bright speckle and
color casts, and the line contours are clearer than those using
only the meta-camera. Figures 5(e) and 5(f) show the intensity
distribution at the center and edge of the captured image, where
the solid and dashed lines correspond to images captured only
from the meta-camera and improved by the neural network, re-
spectively. The calculated contrasts at the center and edge parts
of the target images are increased by 13.5 times and 2.7 times,
i.e., 0.834, 0.846 for the neural meta-camera, and 0.062, 0.313
for the meta-camera only, respectively. The high contrast values

Fig. 5 Neural meta-camera for imaging. (a) Photograph of the meta-camera system (left) by in-
tegrating the miniature meta-camera (top-right) with a CMOS image sensor, and the schematic
illustration of its structural mechanism (bottom-right) including an aperture, sleeve, and base for
shading and waterproofing. (b) Schematic diagram of meta-camera test. The ground-truth images
are projected on the LCD screen and captured directly by the meta-camera. (c) Comparison re-
covery results from images captured by ultra-wide FOV metalens only and the meta-camera at the
working distance of 2 cm. Cartoon images from an alarm clock and a blue bed show that chromatic
aberrations and central bright speckle are greatly improved after recovery by neural networks.
More comparison images (e.g., doll, coral, and concert) are shown in Figs. S15–S16 in the
Supplemental Material. (d) Images captured through the meta-camera only or with the neural
meta-camera. (e), (f) The corresponding intensity profiles along line AB, A’B’, CD, and C’D’ in
the central and edge areas of the images, respectively. The image contrast for the neural
meta-camera exhibits substantial enhancement compared to that for the meta-camera without
neural networks.
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indicate high edge sharpness in neural meta-camera imaging.
In conclusion, our neural meta-camera enables high-quality,
wide FOV, and full-color imaging.

To assess the practicability and feasibility of the neural meta-
camera in an actual scene, we captured and recovered the im-
ages in two scenarios. One is the imaging of three monitor
screens at different working distances; the other is the imaging
of multiple objects of various colors arranged at different depths
in an actual scene. In the first scenario, we obtained recovery
images at the working distances of 1.3, 12, and 44.5 cm, as
shown in Fig. S17 in the Supplemental Material. It can be seen
that the image restoration clarity and color comparison are uni-
form at different working distances. The calculated peak signal-
to-noise ratio and structure similarity index measure (SSIM)
values (as shown in Table S4 in the Supplemental Material)
further emphasize quantitatively the quality of image restoration
at different distances.

In the other scenario, we further capture and recover the im-
age of letters and dolls at different working distances in an in-
door scene. We set up a dual optical path data acquisition system
[Fig. S18(a) in the Supplemental Material] based on a cube
beam splitter to obtain pixel-level aligned data sets. As shown
in Fig. S18(b) in the Supplemental Material, in the recovered
image from the neural meta-camera, the letters are clearer,
and the dolls at different working distances of 40, 55, and
85 cm can also be identified. Although the recovered image
lacks detail, its central bright speckle and chromatic aberration
are greatly improved compared to the original image from the
meta-camera. In addition, based on the imaging data from the
actual scene, we compare the performance between the imaging
of the meta-camera and the traditional camera on the multi-label
image classification task. The data from the meta-camera
achieve a precision of 96.47%, while the data from traditional
camera achieve 96.73%. Experiments demonstrated that the im-
aging of the meta-camera did not show significant performance
differences in recognition tasks compared to imaging from a tra-
ditional camera, which hints at the potential of meta-camera for
classification and recognition application.

4 Discussion and Conclusion
Our work demonstrates a neural meta-camera for ultra-wide FOV
and full-color imaging in single shot without scanning or image
stitching. The neural meta-camera consists of an ultra-wide FOV
metalens, a CMOS image sensor, and the image recovery neural
network. Due to the high-precision assembly technology, our neu-
ral meta-camera is only 9.07 mm × 9.07 mm × 1.57 mm in
volume, including the support structure and the CMOS image sen-
sor. The neural meta-camera overcomes chromatic aberration,
distortion, central bright speckle, and background noise through
image recovery neural network and successfully achieves full-
color imaging with high contrast over a wide FOV. Such a neural
meta-camera is an exemplary case in imaging systems with minia-
turization, functionality, wide FOV, and high-quality performance
at the same time.

The proposed KD paradigm is theoretically uncoupled from
the design approach, so it is extended to applications such as
depth of field synthesis and outdoor imaging. Under ideal con-
ditions, the model can recover images at the speed of 48 frames
per second on the RTX 3090 GPU, which opens up the possibil-
ity of real-time51 processing in the future. This novel neural
meta-camera module paves the route for meta-optics for the
thinner, lightweight, and more compact visible full-color

imaging system, such as noninvasive52 endoscopy, robot navi-
gation, micro-intelligent systems, and engineering surveying.

Code and Data availability
The data and code supporting this study are available from the
corresponding authors upon reasonable request.
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