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bstract. Nonparametric statistical modeling of background
nd foreground has been widely used for moving foreground
egmentation from video sequences. In this work, a simple
etric is presented to evaluate the performance of various

oreground models. The proposed metric allows us to test
he robustness of the foreground model to the motion and
eformation of the moving foreground. Experiments are per-

ormed on five typical foreground models, showing that the
roposed metric is effective. © 2009 Society of Photo-Optical Instru-
entation Engineers.
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Introduction

oreground segmentation plays an important role in a wide
ange of computer vision applications. Foreground
odeling1,2 has been recently used in conjunction with

ackground modeling3 for segmentation. Foreground and
ackground models can be created in a consistent fashion,
nd the nonparametric statistical model4 is the frequently
sed model now.

To compare the performance of different segmentation
lgorithms, a few metrics are presented. Precision and
ecall1 are the standard measures used in current literatures.
he two measures compare segmentations with the ground

ruth in a pixel-level way, ignoring region-level informa-
ion. Nascimento and Marques5 proposed a region-level
ethod to classify segmentation errors into detection fail-

res, false alarms, splits, merges, and split/merges. The
ethod presented in Ref. 6 is also a pixel-level approach,
hich is designed to compare the ground truth with de-

ected silhouettes used in gait recognition.
We have known that segmentation performance is

argely dependent on foreground modeling. Although some
etrics have been presented for the comparison of segmen-

ation performance, no metrics are reported for the com-
arison of model performance. We present a novel metric
o compare the performance of different foreground mod-
ls. Further, the proposed metric is capable of explaining
he difference in segmentation performance of different al-

091-3286/2009/$25.00 © 2009 SPIE
ptical Engineering 030505-
gorithms from the perspective of foreground modeling.
This metric is also helpful in developing new foreground
models.

This work is organized as follows. The proposed metric
is described in Sec. 2. Experimental results are given in
Sec. 3, followed by conclusions in Sec. 4.

2 Proposed Metric

Some nonparametric methods use multiple features as sta-
tistical variables.7,8 Although the performance improvement
of segmentation is distinct by the use of multiple statistical
variables, it is still difficult to get full segmentation, be-
cause the statistical analysis cannot resolve the uncertainty
of the foreground, such as the motion and deformation of a
moving object. Thus we do not consider those models tak-
ing multiple features for statistical analysis, but only those
models taking advantage of multiple features in a way dif-
ferent from statistical analysis. For example, the model pro-
posed in Ref. 9 uses the color histogram to select the most
suited samples for foreground modeling from all historical
segmentations.

Let It be the input image at time instant t, and In
t be the

color vector of a pixel in position n �for fair comparison,
the YUV color space is used for all models�. All nonpara-
metric statistical foreground models of It can be denoted in
the form of �t= �Y1 ,Y2 , . . . ,YR�, where each element in �t

consists of all pixels labeled foreground at certain time in-
stants, and R is the frame length of �t. Let Xt be the binary
ground truth of image It, with 1 and 0 denoting foreground
and background pixels, respectively. Let Xr be the binary
mask of Yr, with 1 and 0 denoting pixels labeled fore-
ground in Yr and all other pixels, respectively. Let Qt,r be
the XOR image of Xt and Xr, where each pixel Qn

t,r of Qt,r

is defined as

Qn
t,r = �1, if Xn

t = Xn
r = 1

0, if Xn
t = Xn

r = 0

− 1, if Xn
t � Xn

r � . �1�

The performance of �t can be measured with the pro-
posed metric as

M��t� =
�r�nQn

t,r

R*�nXn
t . �2�

According to the definition of M, the most desirable
foreground model should be such that each element Xr of
the model is the same as Xt. In other words, each element in
the most desirable model is a segmentation in which the
moving object shows the same shape in the same place as
the moving object in the current frame. In the previous
definitions, Y is a set of all pixels classified as foreground
in a certain frame, where each pixel is a color vector, and X
is a binary image with the same size as the original image I.

To test the robustness of the model to an object’s mo-
tion, we can compute the position distance of correspond-
ing objects between Xt and Xr. To test the robustness of the
model to an object’s deformation, we can compute the
shape distance of the moving object between Xt and Xr

using various shape descriptors. However, to find corre-
sponding features is a very labor intensive task and error
March 2009/Vol. 48�3�1
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rone, and Xr is often corrupted with splits and defects,
aking shape similarity measurement unreliable. The ad-

antage of the proposed metric is that the computation of
istance is avoided, and the uncertainty of the moving ob-
ect is implicitly highlighted in the XOR operation.

Experimental Results

he proposed metric is applied to characterize the perfor-
ance of five foreground models. Each foreground model

s used in conjunction with a background model to classi-
ed pixels based on energy minimization, as in Ref. 1. The
ve foreground models are simply described as follows.

The first foreground model, the general foreground
odel �G

t ,1 can be denoted as �G
t

�Gt−1 , . . . ,Gt−r , . . . ,Gt−R�, where Gt−r is a set of all pixels
abeled foreground at time instant t−r. Then we consider
wo ways of using motion information for foreground mod-
ling. For simplicity, only single object detection is consid-
red. The centroid of the moving object in the current frame
s predicted by a Kalman filter. Then we move all elements
n �G

t from their centroids to the predicted centroid, result-
ng in the second foreground model �P

t .10 A substitution of
rediction is tracking. The moving object is tracked from
ne frame to the next by the mean-shift tracker. All ele-

Fig. 2 Performance test of the first seque

Fig. 1 Two images of the first sequence and co
text for details.
ptical Engineering 030505-
ments in �G
t are shifted from their centroids to the centroid

of the tracking window in the current frame, leading to the
third foreground model �T

t .
The fourth foreground model9 takes advantage of the

shape and motion information for foreground modeling.
First, predetection is carried out on the current frame with
�G

t . Then we align all historical segmentations to the pre-
segmentation based on the centroid of the moving object.
The shape similarity of the moving object between preseg-
mentation and each aligned segmentation is measured
based on the color histogram. The R frames of aligned seg-
mentations, which have the largest similarity values, are
chosen to form the fourth foreground model �H

t . The fifth
foreground model �U

t consists of the same historical seg-
mentations as �H

t , but with each element unaligned, which
means the motion information is ignored.

The first column of Fig. 1 shows two typical images of
the first test sequence with serious color similarity between
foreground and background. Detected foreground by �G

t ,
�U

t , �P
t , �T

t , and �H
t is shown from the second to the sixth

columns, respectively. Segmentations of 32 frames are
compared with the ground truth in terms of recall,1 which is

a� is recall and �b� is the propose metric.

nding segmentations with different models. See
nce: �
rrespo
March 2009/Vol. 48�3�2
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ble to characterize the robustness of the segmentations to
plits and defects due to the color similarity problem. The
erformance test is shown in Fig. 2.

Figure 2 shows that the segmentation performance is
ertainly dependent on the model performance. By the use
f motion information, the model accuracy is largely im-
roved compared with �G

t ; as a result, segmentations with
uch better recall are derived by �P

t and �T
t . The segmen-

ations by �T
t are a little better than the segmentations by

P
t , because of the better model performance of �T

t . The
eason for this is that the information in the current frame is
sed by the tracker but not by the predictor.

The shape alone cannot provide a notable improvement
n modeling and segmentation. However, combining mo-
ion and shape, as �H

t , displays more obvious improvement
han using motion or shape alone. Some foreground pixels
till cannot be detected in the last of Fig. 1. This suggests
he use of finer features for shape representation, such as
he Zernike moment descriptor and the Fourier descriptor.
he performance of different shape descriptors for fore-
round modeling also can be identified by the proposed
etric.
Experimental results on the second test sequence are

hown in Figs. 3 and 4. This sequence also can be seen in
ef. 11. The second column to the last column in Fig. 3 are

egmentations by �G
t , �U

t , �P
t , �T

t , and �H
t , respectively. We

an think that the same curve as Fig. 2�a� can be obtained

Fig. 3 The second test

ig. 4 Performance test of the second sequence with the proposed
etric.
ptical Engineering 030505-
by observing Fig. 3. By comparing Figs. 3 and 4, the same
conclusions can be obtained as those from the first test
sequence.

4 Conclusion
We propose a metric to check the robustness of different
foreground models with the uncertainty of the moving fore-
ground. This metric is able to explain the difference in seg-
mentations by different algorithms from the perspective of
foreground modeling. Our future work is to develop new
foreground models to more effectively take advantage of
the motion and shape information of the moving object
based on the proposed metric.
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