Computing the Flow of Light

NONSTANDARD FDTD METHODOLOGIES FOR PHOTONICS DESIGN

Computing the Flow of Light

NONSTANDARD FDTD METHODOLOGIES FOR PHOTONICS DESIGN

> James B. Cole Saswatee Banerjee

SPIE PRESS Bellingham, Washington USA Library of Congress Cataloging-in-Publication Data

Names: Cole, James B. (James Bradford), author. | Banerjee, Saswatee, author.

Title: Computing the flow of light : nonstandard FDTD methodologies for photonics design / James B. Cole and Saswatee Banerjee.

Description: Bellingham, Washington : SPIE Press, [2017] | Includes bibliographical references and index.

Identifiers: LCCN 2016033109 | ISBN 9781510604810 (softcover) | ISBN 1510604812 (softcover) | ISBN 9781510604827 (pdf) | ISBN 1510604820 (pdf) | ISBN 9781510604834 (epub) | ISBN 1510604839 (epub) | ISBN 9781510604841 (Kindle/ mobi) | ISBN 1510604847 (Kindle/mobi)

Subjects: LCSH: Photonics–Mathematics. | Electromagnetic waves–Mathematical models. | Finite differences. | Time-domain analysis.

Classification: LCC TA1522 .C65 2017 | DDC 621.36/5-dc23 LC record available at https://lccn.loc.gov/2016033109

Published by

SPIE P.O. Box 10 Bellingham, Washington 98227-0010 USA Phone: +1 360.676.3290 Fax: +1 360.647.1445 Email: books@spie.org Web: http://spie.org

Copyright © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE)

All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means without written permission of the publisher.

The content of this book reflects the work and thought of the authors. Every effort has been made to publish reliable and accurate information herein, but the publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Printed in the United States of America. First Printing. For updates to this book, visit http://spie.org and type "PM272" in the search field.

Contents

Pr	eface			xiii
1	Finit	e Differe	ence Approximations	1
	1.1	Basic I	Finite Difference Expressions	1
		1.1.1	Higher-order finite difference approximations	3
		1.1.2	Computational molecules	4
	1.2	Nonsta	ndard Finite Difference Expressions	5
		1.2.1	Exact nonstandard finite difference expressions	5
		1.2.2	Terminology	6
	1.3	Standa	rd Finite Difference Expressions for the Laplacian	6
		1.3.1	Two dimensions	6
		1.3.2	Three dimensions	9
	1.4	Nonsta	ndard Finite Difference Expressions for the Laplacian	10
		1.4.1	Two dimensions	11
		1.4.2	Three dimensions	13
	1.5	Factori	ng the Nonstandard Finite Difference Laplacian	16
		1.5.1	Two dimensions	16
		1.5.2	Three dimensions	16
	Appe	endix 1.1	Mathematical Properties of Finite Difference Operators	19
		A1.1.1	Forward finite difference operator	19
		A1.1.2	Central finite difference operator	20
		A1.1.3	Multiple variables	21
	Appe	endix 1.2	2 Noninteger-Order Sums and Differences	21
			Noninteger-order summation	22
		A1.2.2	Noninteger-order differences	25
	Refe	rences		29
2	Αςςι	uracy, S	tability, and Convergence of Numerical Algorithms	31
	2.1	Introdu	ction	32
		2.1.1	Stable versus unstable algorithms	32
		2.1.2	Truncation and round-off error	32
	2.2	Bessel	Recursion	33
	2.3	Recurs	ive Iteration	34
	2.4	Decay	Equation	35

		0.4.4		05		
		2.4.1		35		
		2.4.2		36		
		2.4.3		37		
		2.4.4	Nonstandard central finite difference model	39		
		2.4.5	Nonstandard forward finite difference model	40		
	2.5		is Model of Population Growth	40		
	2.6	Finite	Difference Models of Nonlinear Differential Equations	41		
		2.6.1	Standard forward finite difference model	41		
		2.6.2	Nonstandard forward finite difference model	44		
	2.7	Relaxa	ation Algorithm for the Laplace Equation and			
		Poisso	on's Equation	45		
		2.7.1	Basic relaxation algorithm	45		
		2.7.2	Relaxation and diffusion	47		
		2.7.3	Analytical solutions	48		
		2.7.4	Parallel versus serial computing	49		
		2.7.5	Over-relaxation	51		
	2.8	The R	andom Walk Model and the Diffusion Equation	52		
		2.8.1	•	52		
		2.8.2	Diffusion equation	53		
			1D random walk	54		
	Appe		1 Matrix Formulations of Relaxation	55		
	1-1		Parallel relaxation	56		
			Serial relaxation	57		
			Over-relaxation	58		
			Convergence	59		
			Two dimensions	61		
	Anne		2 Noninteger-Order Integrals and Derivatives	62		
	Аррс		Noninteger-order integration	62		
			Noninteger-order differentiation	63		
	Dofo	rences	Noninteger-order differentiation	66		
	Rele	lences		00		
3	Finite Difference Models of the Simple Harmonic Oscillator					
	3.1	Analytic Solution of the Simple Harmonic Oscillator				
	3.2	Secon	d-Order Finite Difference Model of the Simple			
		Harmo	onic Oscillator	68		
	3.3					
			onic Oscillator	69		
	3.4	Nonsta	andard Finite Difference Model of the Simple			
			onic Oscillator	71		
	3.5	3.5 Analytical Solutions of the Forced Damped Harmonic				
		Oscilla	-	73		
		3.5.1	Free damped oscillator	73		
		3.5.2	Forced damped oscillator	73		
		J.J.L		.0		

	3.6		Damped Harmonic Oscillator: Standard Finite	
	o -		nce Models	75
	3.7		Damped Harmonic Oscillator: Nonstandard	
			Difference Models	77
		3.7.1		77 79
	A 10 10 0	3.7.2		
			Stability Analysis of the Second-Order Finite Difference Model	83
			Stability Analysis of the Fourth-Order Finite Difference Model Green's Function for the Damped Harmonic Oscillator	86
	Appe		Simple harmonic oscillator without damping	86
			Simple harmonic oscillator with damping	88
	Anne		Properties of the δ Function and the Step Function	89
	/ ppc		δ function definition and elementary properties	89
			Derivative of the δ function	90
			Representations of the δ function	90
			The step function	92
			Derivatives of x	93
		A3.4.6		94
	Appe		Discrete Green's Function for the Finite Difference	
	• •		Model of the Damped Harmonic Oscillator	94
	Refer	rences		97
4	The 1		e Equation	99
-	4.1		pmogeneous Wave Equation	99
	4.1	4.1.1		99
		4.1.2		100
		4.1.3		100
		4.1.4	0	103
		4.1.5	Reflection and transmission at a medium interface	104
			Reflection and transmission of a layer	105
	4.2		amped Wave Equation	106
	4.3		Equations with a Source in Unbounded Space	108
		4.3.1	Lossless wave equation	108
		4.3.2	Damped wave equation	111
	4.4	Source	in a Reflecting Cavity	114
		4.4.1	Point source switched on instantaneously	115
		4.4.2	Point source switched on slowly	116
	4.5	The Sc	cattered Field	116
	Appe	ndix 4.1	The Wave Model and the Wave Equation	118
			1D string	118
			Two and three dimensions	120
			Wave equation with a source	121
			Damped wave equation with a source	121
	Appe	ndix 4.2	Transformation of the Wave Equation and Special Relativity	121

		A4.2.1	Galilean transformation	122
		A4.2.2	General transformation of the wave equation	122
		A4.2.3	Galilean transformation of the wave equation	123
		A4.2.4	Lorentz transformation	124
		A4.2.5	Transformation of velocity	127
		A4.2.6	Transformation of acceleration	127
		A4.2.7	Relativistic momentum	127
			Relativistic energy	129
			Invariants under the Lorentz transformation	130
	Appe		Reflection and Transmission of Layered Structures	131
			Single layer	134
	Appe		Green's Function for the 1D Wave Equation	135
			Green's function in unbounded space	136
			Green's function in a reflecting cavity	139
			Green's function for the unbounded damped wave equation	141
	Refer	rences		142
5	FDTE) Algorit	hms for the 1D Equation	143
	5.1	•	eneous Wave Equation	143
		5.1.1	Standard finite difference model	143
			Error of the standard finite difference model	144
		5.1.3		145
		•••••	Devil in the details	146
			Precursor waves: physical insights	147
	5.2	•	d Wave Equation	148
		5.2.1	Standard finite difference models	148
	5.0	5.2.2	Nonstandard finite difference models	150
	5.3		Equation with a Source	152
		5.3.1		152
		5.3.2		152 153
		5.3.3		
	5.4	5.3.4 Time R	······	157 158
		ences	eversal	150
				100
6	-		velopment and Applications of FDTD Algorithms in One	404
		nsion	· · · · - ·	161
	6.1		mputational Boundary	161
		6.1.1	One-way wave equations	162
		6.1.2	Finite difference models of the one-way wave equations	163
		6.1.3	Central finite difference model of the one-way wave equations	164
		6.1.4	Nonstandard finite difference model of the one-way wave	400
	<u> </u>	E de la d	equations	166
	6.2	⊏xtracti	ng Field Intensity from a Calculation	167

	6.3	Zero-O	rder Object Models on the Grid	168
	6.4	Setting	up an FDTD Calculation	170
		6.4.1	Parameter choice	171
	6.5	The So	cattered Field	173
		6.5.1	Standard finite difference model	174
		6.5.2	Nonstandard finite difference model	174
		6.5.3	Setup of a scattered-field computation	176
		6.5.4	Transmission/refection spectrum of a layer	177
	6.6	Solutio	n using Discrete Green's Functions	185
	Appe	ndix 6.1	Discrete Green's Function for the 1D Finite Difference	
			Wave Equation	188
		A6.1.1	Introduction	188
		A6.1.2	Derivation of the discrete Green's function	189
		A6.1.3	Derivation of the discrete Green's function using FDTD	191
		A6.1.4	Interpretation and analysis	192
	Refe	rences		193
7	FDT) Algori	thms to Solve the Wave Equation in Two and	
		e Dimer	-	195
	7.1	The Ho	omogeneous Wave Equation	195
	7.2		for the Homogeneous Wave Equation	197
		7.2.1		197
		7.2.2	Nonstandard FDTD	198
		7.2.3	FDTD for the damped wave equation	201
	7.3		Equation with a Source	201
	7.4		cattered Field	205
		7.4.1	Analytic solution	205
		7.4.2	The standard finite difference model	207
		7.4.3	Nonstandard FDTD	208
	7.5	Absorb	ing Boundary Condition	210
		7.5.1	One-way wave equations	211
		7.5.2	Standard finite difference model	212
		7.5.3	Nonstandard finite difference model	216
		7.5.4	Numerical stability of the Mur absorbing boundary condition	217
		7.5.5	Comparison of S- and NS-Mur ABCs	218
	7.6	Object	Models on the Grid	220
		7.6.1	Model of a dielectric	221
		7.6.2	Model of an absorbing dielectric	222
		7.6.3	Generalization to two and three dimensions	223
		7.6.4	Numerical examples	224
	7.7	Mie Sc	cattering and Validation of Computations	225
		7.7.1	Effect of grid representation	226
	7.8	Discret	e Green's Function Solution of the Scattering Problem	227
		7.8.1	Discrete Green's functions	227

ix

х			(Contents	
	Арре	7.8.2 endix 7.1	Applications of discrete Green's functions Stability Analysis of the FDTD Algorithm	229	
			for the Wave Equation	230	
		A7.1.1	Standard FDTD	230	
		A7.1.2	Nonstandard FDTD	233	
	Appe	endix 7.2	2 Stability Analysis of the Mur Absorbing Boundary Condition	236	
	Refe	rences		240	
8	Revi	ew of El	ectromagnetic Theory	243	
	8.1	Maxwe	Il's Equations: General Formulation	243	
	8.2	Linear	Media	245	
		8.2.1	Maxwell's equations in a linear nonconducting		
			medium with no source current	246	
		8.2.2	Maxwell's equations in a linear conducting medium		
			with a source current	248	
	8.3	Bounda	ary Conditions	250	
	8.4	Linear	Dispersive Materials	250	
		8.4.1	Constitutive relations	250	
		8.4.2	Maxwell's equations	253	
	8.5		rs–Kronig Relations	253 258	
	Appe	Appendix 8.1 Properties of the Fourier Transform			
			Definitions	258	
			Representation of the δ function	258	
			Convolution theorem	259	
			Fourier transform of the derivative	259	
	Refe	rences		260	
9	The Yee Algorithm in One Dimension				
	9.1		Solution of Maxwell's Equations	261	
	9.2		rd Yee Algorithm	262	
		9.2.1		262	
			Including conductivity	264	
			Including source current and conductivity	266	
			Alternative configurations of the Yee algorithm	267	
	9.3	-	Itational Boundaries	268	
	9.4		onstandard Yee Algorithm	269	
		9.4.1	Zero conductivity	269	
		9.4.2	5	270	
		9.4.3	5	271	
		9.4.4	Computational boundaries	273	
	Appe	endix 9.1	Analytic Solution of Maxwell's 1D Equations		
			for a Point Source Current	274 276	
	• •	Appendix 9.2 Computer Program in Pseudocode			
	References 2				

10	Tho	Yee Algorithm in Two and Three Dimensions	281	
10		General Development	281	
		Implementation in Two Dimensions	283	
	10.2	10.2.1 TM mode	284	
		10.2.2 TE mode	288	
	10.3	The Scattered Field	291	
	10.4	Grid Representations for the Yee Algorithm	293	
	10.5	Algorithm Validation via Mie Scattering	296	
	Appe	ndix 10.1 Mie Scattering off of a Cylinder in the TE Mode	297	
	Appe	ndix 10.2 Mie Scattering off of a Cylinder in the TM Mode	303	
	Appe	ndix 10.3 Cylindrical Whispering Gallery Modes	306	
	Refe	rences	308	
11	Exan	nple Applications of FDTD	311	
	11.1	Beam Formation	311	
		11.1.1 Gaussian beam	312	
		11.1.2 Bessel beam	314	
		11.1.3 Airy–Gauss beam	315	
		Whispering Gallery Modes and Devices	315	
	Refe	rences	319	
12	FDT	O for Dispersive Materials	321	
	12.1	Material Dispersion and Dispersive FDTD	321	
		12.1.1 Recursive convolution FDTD and its monochromatic cousin	323	
		Mathematical Description of MRC-FDTD	326	
		MRC-FDTD for the Wave Equation in the TE Mode	332	
		Stability of MRC-FDTD	333	
		S-FDTD for Materials Described by Normal Dispersion Numerical Evaluation of Extinction and Scattering Cross-Sections	334 335	
		Reflection/Transmission of Thin Metal Films: MRC-FDTD versus	335	
	12.1	Analytical Calculation	342	
	12.8	Summary	345	
		ndix 12.1 Eigenvalues and Eigenvectors of Matrices	345	
		ndix 12.2 MRC-FDTD Stability Analysis	347	
	Refe	rences	349	
13	Phot	onics Problems	353	
	13.1	Simulation of Metal Nanoparticles	353	
		13.1.1 Simulations of pairs or arrays of nanocylinders	356	
	13.2	Simulation of Metal-Insulator-Metal Nanoresonators		
		for Color Filtering	362	
		13.2.1 Proposed structure	365	
		13.2.2 Simulation results	365	
		Summary	372	
	References 3			

xi

xii		Contents
14 Phot	onics Design	377
14.1	Designing Low-Reflection, Multilayer Wire-Grid Polarizers	
	for LCD Applications	377
	14.1.1 Ab initio design	380
	14.1.2 Results	383
	14.1.3 Discussion	386
14.2	Designing Wavelength-Selective, Polarizing Reflector Films	
	for LCD Applications	387
	14.2.1 Method of design	388
	14.2.2 Multilayer films	392
	14.2.3 Application in LCD devices	392
	14.2.4 Discussion	394
14.3	Summary	394
Refe	rences	395
Append	ix A Supplemental Topics	399
Append	ix B List of Programs and Instructions	403
B.1 I	nstructions for Mathcad Programs	403
B.2 l	List of Mathcad Programs	404
B.3 F	Pseudocode Programs	407
Index		409

Preface

People often speak of *the* finite difference time domain (FDTD) method, as if there were only one such method, formulated long ago by wise sages and fixed for all time. This is not so. FDTD is a topic of active research, and its methodology is constantly evolving. FDTD and FDTD-like methods can be used to solve a wide variety of problems, including—but not limited to—the wave equation, Maxwell's equations, and the Schrödinger equation.

FDTD is particularly useful for investigating time-dependent phenomena. As the name suggests, the time evolution of a system is computed at discrete time steps, and periodic visualizations can show its time evolution—information that is not available in a frequency domain technique. This yields useful physical insights into transient processes as well as an intuitive feel for what is happening; often, one can see at a glance if something is wrong with a calculation—saving not only computer time, but more importantly, human time.

In essence, *an* FDTD algorithm is derived from *a* difference equation model of the differential equation to be solved by replacing the derivatives with finite difference (FD) expressions. (We use indefinite articles to indicate that there can be more than one FD model and more than one FDTD algorithm.) As we shall demonstrate in this book, the accuracy and stability of FDTD algorithms can be greatly improved by using what are called *nonstandard* FD models on which nonstandard FDTD is based.

High-precision FDTD is the primary—but not the only—subject of this book. Although the basic FDTD algorithm is simple, you will encounter many 'devils in the details' when you actually try to use it to solve a problem. Throughout this book we address these devilish details.

Green's functions, although an elegant analytical construct, are of limited practical use to solve differential equations because they can be difficult to find, but the discrete Green's function (DGF) of a difference equation model of a differential equation can be found using FDTD. The DGF methodology is a useful alternative to conventional FDTD for certain problems. Besides introducing useful new methodologies, we have written this book to give our readers new insights, along with the analytical background necessary to develop their own methodologies to solve new problems on the leading edges of photonics and electromagnetics research. We explain not only how FDTD works, but why it works. We delve into the details of a few analytical solutions against which the numerical solutions can be compared to validate FDTD algorithms and to elucidate their limitations.

We make no attempt to be encyclopedic; rather, we delve deeply (devils in the details) into a few of the most important and basic methodologies. We hope that our readers can use this book to write their own working programs and improve on our methods, and that they will share what they have learned with the community.

Our experience in solving real-life applications with FDTD has taught us that there are two distinct communities: those who see FDTD from the algorithmic-computational point of view and those who see themselves primarily as users of black-box software. We believe that FDTD simulations must be guided by an understanding of Maxwell's equations and how these equations incorporate material properties. This premise is an important focus of this book. Through the simulation examples presented, we have attempted to show that FDTD and related techniques can be very useful in solving practical problems.

Summary of the Contents

- **Chapter 1** introduces FD expressions and develops the notation that is used throughout this book. The appendices give some supplementary advanced topics.
- **Chapter 2** introduces algorithms in general. We analyze a few example algorithms in detail and discuss their accuracy and numerical stability. In the appendices we introduce additional advanced topics. Working programs illustrate some of the main ideas.
- **Chapter 3** develops the basic concepts of the FDTD methodology using the simple harmonic oscillator as a vehicle. We then introduce the nonstandard FDTD methodology. We go on to develop analytic solutions for both the differential equations and their corresponding difference equations using Green's functions. In the appendices we review some basic mathematical concepts and derive Green's functions for differential and difference equations. We also analyze the accuracy and stability of a few simple FDTD algorithms.
- Chapters 4–7 present FDTD for the wave equation. Following a strategy of stepwise increasing complexity, we start with the one-dimensional wave equation and develop the machinery needed to solve useful problems using FDTD. The appendices contain advanced

material (Green's function solutions, including the development of a Green's function for the finite difference form of the wave equation) and deal with various devilish details. We then extend these developments to two and three dimensions, and give some working example programs.

- Chapter 8 provides a brief review of electromagnetic theory.
- Chapters 9 and 10 present FDTD for Maxwell's equations. We first develop standard and nonstandard FDTD (the Yee algorithm) in one dimension, and then extend the methodology to two and three dimensions. This completes the development of conventional and *nonstandard* FDTD. Working programs illustrate some the main ideas.
- Chapter 11 provides example problems.
- **Chapters 12–14** present FDTD for the dispersive case and provide example problems in photonics design. We introduce some of our latest research results on how to improve accuracy in the dispersive case. We solve some interesting photonics problems and discuss photonics design for engineering a subwavelength structure to have desired optical properties.

Audience

Our intended audience includes intelligent beginners such as students, experimental scientists who want to model their experiments, practical engineers, and theoretical researchers grappling with problems that cannot be solved analytically.

We introduce our nonstandard FDTD methodology as a useful tool for computational professionals as well as for beginners.

Very few members of the physics community are aware of the wide utility of FDTD methods, and we hope that our book will inform this group.

We include working FDTD programs that bring wave and electromagnetic phenomena to life. Our analytic solutions motivate the study of mathematical physics as a practical tool. Indeed, this book could be useful for teaching a mathematical physics, applied mathematics, or engineering class.

We also hope that advanced practitioners of FDTD can use this book to extend the nonstandard approach to other FDTD methodologies not covered here.

Finally, this book is written for researchers who want to develop new methodologies that go beyond those we have presented.

Acknowledgments

We thank Professor Ronald Mickens, one of the great pioneers of the nonstandard methodology, as well as our colleagues, collaborators, and students, who are too numerous to list.

Author Contact

We welcome comments and suggestions from our readers. James B. Cole and Sasawatee Banerjee can be contacted at cole.banerjee.book@gmail.com.

James B. Cole Sasawatee Banerjee May 2017