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A
Airy beam, 82, 85
Airy disk, 116
Airy equation, 72
Airy functions, 14, 71, 73, 75
Airy function asymptotic form, 79
Ampere’s law, 236
angular Mathieu equation,
247, 262

angular Mathieu function, 248, 251
annihilation operator, 146
apodization, 126
Appel’s symbol, 272
associated Laguerre equation, 194,
200, 283

associated Laguerre function, 13,
197, 283

associated Laguerre function
generating function, 194

associated Laguerre polynomial
orthogonality, 196

associated Laguerre polynomial
recurrence relation, 196

associated Laguerre polynomial
Rodriquez formula, 196

associated Laguerre polynomials,
178, 194, 197

associated Legendre function, 13,
220

associated Legendre function
orthogonality, 221

associated Legendre function
recurrence relation, 221

associated Legendre function
Rodrigues’ formula, 220

auxiliary equation, 293

B
beam waist, 163
Bessel and Mathieu functions, 256
Bessel beams, 127
Bessel equation, 76, 91
Bessel–Fourier series, 121
Bessel function, 14, 33, 65, 68, 77,
91, 192, 196, 328

Bessel function first kind, 92, 94–95
Bessel function generating function,
109

Bessel function integral relations,
112, 119

Bessel function recurrence relation,
110, 117

Bessel function second kind, 97–98,
118

Bessel function spherical, 234
Bessel function third kind, 100
Bessel function zeros, 96
Bessel indicial equation, 92
beta function, 29, 32, 277
beta function and factorial, 34
beta function gamma function, 33
beta function recurrence relation, 34
beta function reflection formula, 34
beta function symmetry, 33
binomial coefficient, 134, 271
binomial expansion, 133
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C
Cartesian coordinates, 4
caustic, 80
Chebyshev equation, 133, 285
Chebyshev polynomial generating
function, 140

Chebyshev polynomial
orthogonality, 143

Chebyshev polynomial Rodrigues’
formula, 142

Chebyshev polynomials first kind,
134, 136, 175, 178, 285

Chebyshev polynomial recurrence
relation, 139

Chebyshev polynomial second kind,
136–137, 175, 178

Chebyshev polynomials, 14, 133
Chebyshev series, 143
circular cylindrical coordinates, 9
complementary error function,
40

complementary function, 293
confluent hypergeometric equation,
269, 279

Cornu spiral, 62, 64
cosine integral, 49
creation operator, 146
cumulative normal distribution, 38
curl, 3, 6
curvilinear coordinates, 4–5
cylindrically symmetric refractive
index, 198

D
D’Alembertian operator, 1
de Moivre’s formula, 133
delta function, 51, 314, 317
differential operator, 2, 6
diffusion coefficient, 2
diffusion equation, 2
digamma function, 32, 46
divergence, 6
divergence theorem, 56

E
eigenfunction, 89
eigenvalue, 2, 89
eikonal, 85
elliptic integrals, 66
elliptical cylindrical coordinates, 10
error function and gamma function,
39

error function and normal
distribution, 38

error function series expansion, 39
Euler–Mascheroni constant, 22, 32,
46, 99

exponential function, 39
exponential integral, 45

F
factorial, 22
factorial and gamma function, 23
Faraday’s law, 236
Floquet’s theorem, 248
Fourier coefficients, 329
Fourier transform, 292–293, 302
Fraunhofer diffraction, 60, 111
Fresnel diffraction, 60
Fresnel integrals, 58, 61
Fresnel length, 60
Fresnel transform, 305
Fresnel zone plate, 308
Frobenius method, 94, 148, 185,
205, 270

G
gamma function, 21, 93, 277
gamma function duplication
formula, 95

gamma function recurrence
relation, 23, 37

gamma function reflection formula,
30, 281

Gauss coefficients, 240
Gauss’s law, 236
Gaussian function, 24, 52, 318
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Gegenbauer and Chebyshev
polynomials, 175

Gegenbauer and Hermite
polynomials, 174

Gegenbauer and Legendre
polynomials, 174

Gegenbauer generating function,
171, 177

Gegenbauer polynomial
orthogonality, 173

Gegenbauer polynomial recurrence
relation, 173

Gegenbauer polynomials, 141,
171–172

geometric series, 273
generalized Bessel equation, 99
Gouy phase, 163
gradient, 5–6
gradient index, 86
Green’s function, 52, 56–57, 60
Green’s theorem, 58

H
Hankel function, 68
Hankel function recurrence relation,
118

Hankel transform, 300
harmonic function, 317
Heaviside function, 51
Helmholtz equation, 1, 11, 12, 58,
82, 161, 247

Helmholtz equation cylindrical
coordinates, 247

Helmholtz equation spherical
coordinates, 12, 13, 108

Helmholtz–Kirchhoff formula, 58
Hermite equation, 145, 283
Hermite function, 14, 147
Hermite–Gauss function, 318
Hermite polynomial generating
function, 150

Hermite polynomial indicial
equation, 148

Hermite polynomial orthogonality,
152

Hermite polynomial
orthonormality, 153

Hermite polynomial recurrence
relation, 151

Hermite polynomial Rodrigues’
formula, 147, 157

Hermite polynomials, 145, 147, 174,
196, 284

Hermite series, 154
Hermite–Gauss function, 152, 155,
161

Hill equation, 249
hindered rotation, 262
hyperbolic Bessel function, 103
hypergeometric equation, 269
hypergeometric function and
Zernike polynomials, 329

hypergeometric function generating
function, 278

hypergeometric function recurrence
relations, 282

I
impulse response, 51
incomplete beta function, 35
incomplete gamma function, 31, 45,
65

indicial equation hypergeometric,
271–272

J
Jacobi polynomial generating
function, 175

Jacobi polynomial orthogonality, 176
Jacobi polynomial recurrence
relation, 176

Jacobi polynomial Rodrigues’
formula, 176

Jacobi polynomials, 175
Jacobi series, 112
Jacobi–Anger expansion, 111
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K
Kaiser–Bessel window, 126
Kelvin functions, 104–105
Kronecker delta, 57
Kummer function, 280

L
L’Hospital’s rule, 46
ladder operator, 146
Laguerre equation, 185, 283
Laguerre–Gauss beams, 203
Laguerre polynomial generating
function, 188

Laguerre polynomial indicial
equation, 185

Laguerre polynomial orthogonality,
191

Laguerre polynomial
orthonormality, 192

Laguerre polynomial recurrence
relation, 189, 190

Laguerre polynomial Rodrigues’
formula, 188

Laguerre polynomials, 13, 185–186
Lamé coefficients, 5, 246
Laplace equation, 1, 292
Laplace series, 228
Laplace transform, 278, 292, 295
Laplacian, 1, 6, 246, 304
Legendre canonical form, 68
Legendre duplication formula,
28–29, 106, 177

Legendre equation, 205, 284
Legendre function, 206–207
Legendre function generating
function, 208, 210, 215

Legendre function indicial equation,
205

Legendre function integral
representation, 214, 216

Legendre function orthogonality,
218

Legendre function orthonormality,
218

Legendre function recurrence,
209–210

Legendre function Rodrigues’
formula, 213

Legendre function second kind, 208
Legendre function trigonometric
form, 212

Legendre gravitational potential,
212

Legendre polynomials, 13, 69, 141,
174, 178, 206, 284, 328

Leibniz theorem, 187, 193, 220
linear operator, 2
logarithmic integral, 48
Lorentz distribution, 51 lowering
operator, 146

M
MacRobert’s E-function, 270
Mathieu beam, 262
Mathieu equation, 247, 266
Mathieu function recurrence
relation, 252

Mathieu functions, 11, 248
Maxwell’s equations, 2
Mehler’s formula, 157
Meijer’s G-function, 270
metric, 4–5
minimax, 144
modified Bessel function, 102, 119
modified Mathieu function, 255
multipole expansion, 237

N
nanoantennas, 264
nanomodes, 264
Neumann function, 97–98

O
obliquity factor, 59
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P
parabolic index, 159
paraxial optics, 59
paraxial wave equation, 162
Parseval’s theorem, 298
particular integral, 293
particular solution, 293
Paul trap, 264
permeability, 3
permittivity, 3
phase speed, 1
Pochhammer symbol, 271, 273
Poisson’s equation, 56
potential well, 88

Q
quantum computer, 266

R
radial Mathieu equation, 247
radial Mathieu function, 248, 255
radial profile refractive index, 123
radial wave equation, 125, 198, 201
raising operator, 146
Rayleigh formula, 107
Rayleigh range, 127, 163
relativistic Hermite polynomials,
166

Rodrigues’ formula, 181

S
scalar wave equation, 82, 160, 198
scaling factor, 5
Schrödinger equation, 2, 88, 108,
260

Seidel aberrations, 331
separation of variables, 11, 82, 160,
247, 292

sinc function, 50
sine integral, 49
special functions, 13
spherical Bessel function, 105, 120
spherical Hankel functions, 105

spherical harmonics, 223
spherical harmonics addition
theorem, 227

spherical harmonics
orthonormality, 223

spherical polar coordinates, 7, 26
spherical wave, 58, 318
standard normal distribution, 38
step-index refractive index, 83,
125

Stirling’s approximation, 23–24
Sturm–Liouville equation, 152, 180,
217, 287

T
trigonometric function, 30

U
unit vectors, 5

V
vector wave equation, 3

W
wave equation, 1–2
wave equation cylindrical
coordinates, 200

wave function, 58
wavefront error, 334
waveguide, 83
Weber–Gauss equation, 160
Weber–Hermite equation, 145
Whittaker equation, 287
Whittaker function, 287
Wigner distribution, 315
window function, 126

Z
Zernike polynomial orthonormality,
326

Zernike polynomial recurrence
relation, 327

Zernike polynomials, 321, 325
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