Presentation
17 August 2024 Sub/millimeter-Wave Dual-Band Line Intensity Mapping Using the Terahertz Integral Field Units with Universal Nanotechnology (TIFUUN) for the Atacama Submillimeter Telescope Experiment (ASTE)
Kotaro Kohno, Akira Endo, Yoichi Tamura, Akio Taniguchi, Tatsuya Takekoshi, Shiro Ikeda, Naoki Yoshida, Kana Moriwaki, Kenichi Karatsu, Jochem J. A. Baselmans, Louis H. Marting, Arend Moerman, Bruno T. Buijtendorp, Shahab Dabironezare, Matus Rybak, Tom J. L. C. Bakx, Leon G. G. Olde Scholtenhuis, Fenno Steenvoorde, Robert Huiting, David J. Thoen, Lingyu Wang, Aurora Simionescu, Stephen J. C. Yates, Alessandro Monfardini, Martino Calvo, Paul P. van der Werf, Sten Vollebregt, Bernhard R. Brandl, Tai Oshima, Ryohei Kawabe, Kazuyuki Fujita, Shunichi Nakatsubo, Yuki Kimura, Akiyoshi Tsujita, Yuki Yoshimura, Shinji Fujita, Yuri Nishimura, Yuka Yamada, Sho Fujisawa, Kanako Narita, Tetsuhiro Minamidani, Shun Ishii, Fumiya Maeda, Adam Lidz, Denis Burgarella, Bunyo Hatsukade, Fumi Egusa, Kana Morokuma-Matsui
Author Affiliations +
Abstract
We present a plan for sub/millimeter-wave line intensity mapping (LIM) using an imaging spectrograph based on the Terahertz Integral Field Units with Universal Nanotechnology (TIFUUN) architecture. We aim to measure the dust-enshrouded cosmic star formation rate density within the first 2 billion years by conducting LIM observations of ionized carbon [C II] 158 μm and oxygen [O III] 88 μm lines, redshifted to sub/millimeter wavelengths. The proposed imaging spectrograph will simultaneously observe two frequency bands: Band-1 (139-179 GHz) and Band-2 (248-301 GHz). Each band will feature up to ∼100 imaging pixels (spaxels), with each spaxel having 100 spectral channels, providing a modest spectral resolution (R~500). The total number of detectors (voxels) will reach ~20,000. This dual-band configuration will allow simultaneous measurement of key spectral lines, e.g., [C II] 158 μm and [O III] 88 μm lines at z = 10.2 - 12.6, and CO(4-3), (7-6), [C I](1-0) and (2-1) at z = 1.9 - 2.2, enabling cross-correlation analysis. We will develop data-scientific methods to remove atmospheric noise using sparse modeling and to extract signals from the observed data using deep learning.
Conference Presentation
© (2024) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Kotaro Kohno, Akira Endo, Yoichi Tamura, Akio Taniguchi, Tatsuya Takekoshi, Shiro Ikeda, Naoki Yoshida, Kana Moriwaki, Kenichi Karatsu, Jochem J. A. Baselmans, Louis H. Marting, Arend Moerman, Bruno T. Buijtendorp, Shahab Dabironezare, Matus Rybak, Tom J. L. C. Bakx, Leon G. G. Olde Scholtenhuis, Fenno Steenvoorde, Robert Huiting, David J. Thoen, Lingyu Wang, Aurora Simionescu, Stephen J. C. Yates, Alessandro Monfardini, Martino Calvo, Paul P. van der Werf, Sten Vollebregt, Bernhard R. Brandl, Tai Oshima, Ryohei Kawabe, Kazuyuki Fujita, Shunichi Nakatsubo, Yuki Kimura, Akiyoshi Tsujita, Yuki Yoshimura, Shinji Fujita, Yuri Nishimura, Yuka Yamada, Sho Fujisawa, Kanako Narita, Tetsuhiro Minamidani, Shun Ishii, Fumiya Maeda, Adam Lidz, Denis Burgarella, Bunyo Hatsukade, Fumi Egusa, and Kana Morokuma-Matsui "Sub/millimeter-Wave Dual-Band Line Intensity Mapping Using the Terahertz Integral Field Units with Universal Nanotechnology (TIFUUN) for the Atacama Submillimeter Telescope Experiment (ASTE)", Proc. SPIE PC13102, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XII, PC1310209 (17 August 2024); https://doi.org/10.1117/12.3021109
Advertisement
Advertisement
Back to Top