Lead-halide perovskite nanocrystals are promising candidates for semiconductor laser cooling due to their near-unity photoluminescence quantum yields and efficient photon/phonon up-conversion process. This unexpected, efficient sub-gap energy up-conversion implies an unexpectedly strong electron-phonon interaction in perovskite nanocrystals. However, the underlying mechanism remains mostly unclear. Detailed experiments, along with theory, have now been conducted to elucidate the efficient up-conversion in CsPbBr3 NCs, utilizing a combination of techniques: photothermal absorption spectroscopy, up-conversion detuning spectroscopy, and ultrafast transient differential absorption spectroscopy.
|