Presentation + Paper
9 September 2015 On the relation between local and charge-transfer exciton binding energies in organic photovoltaic materials
Hilde D. de Gier, Ria Broer, Remco W. A. Havenith
Author Affiliations +
Abstract
In organic photovoltaic devices two types of excitons can be generated for which different binding energies can be defined: the binding energy of the local exciton generated immediately after light absorption on the polymer and the binding energy of the charge-transfer exciton generated through the electron transfer from polymer to PCBM. Lowering these two binding energies is expected to improve the efficiency of the devices. Using (time-dependent) density functional theory, we studied whether a relation exists between the two different binding energies. For a series of related co-monomers, we found that the local exciton binding energy on a monomer is not directly related to that of the chargetransfer exciton on a monomer-PCBM complex because the variation in exciton binding energy depends mainly on the variation in electron affinity, which does not affect in a direct way the charge-transfer exciton binding energy. Furthermore, for the studied co-monomers and their corresponding trimers, we provide detailed information on the amount of charge transfer upon excitation and on the charge transfer excitation length. This detailed study of the excitation process reveals that the thiophene unit that links the donor and acceptor fragments of the co-monomer actively participates in the charge transfer process.
Conference Presentation
© (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Hilde D. de Gier, Ria Broer, and Remco W. A. Havenith "On the relation between local and charge-transfer exciton binding energies in organic photovoltaic materials", Proc. SPIE 9567, Organic Photovoltaics XVI, 95670N (9 September 2015); https://doi.org/10.1117/12.2187872
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Excitons

Polymers

Solar energy

Solar cells

Organic photovoltaics

Oscillators

Molecules

Back to Top