Paper
17 April 2014 Investigating printability of native defects on EUV mask blanks through simulations and experiments
Author Affiliations +
Abstract
Availability of defect-free masks is considered to be a critical issue for enabling extreme ultraviolet lithography (EUVL) as the next generation technology. Since completely defect-free masks will be hard to achieve, it is essential to have a good understanding of the defect printability as well as the fundamental aspects of a defect that result in the defects being printed. In this work, the native mask blank defects were characterized using atomic force microscopy (AFM) and cross-section transmission electron microscopy (TEM), and the defect printability of the characterized native mask defects was evaluated using finite-difference time-domain (FDTD) simulations. The simulation results were compared with the through-focus aerial images obtained at the SEMATECH Actinic Inspection Tool (AIT) at Lawrence Berkeley National Lab (LBNL) for the characterized defects. There was a reasonable agreement between the through-focus FDTD simulation results and the AIT results. To model the Mo/Si multilayer growth over the native defects, which served as the input for the FDTD simulations, a level-set technique was used to predict the evolution of the multilayer disruption over the defect. Unlike other models that assume a constant flux of atoms (of materials to be deposited) coming from a single direction, this model took into account the direction and incident fluxes of the materials to be deposited, as well as the rotation of the mask substrate, to accurately simulate the actual deposition conditions. The modeled multilayer growth was compared with the cross-section TEM images, and a good agreement was observed between them.
© (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Mihir Upadhyaya, Vibhu Jindal, Henry Herbol, Il-Yong Jang, Hyuk Joo Kwon, Jenah Harris-Jones, and Gregory Denbeaux "Investigating printability of native defects on EUV mask blanks through simulations and experiments", Proc. SPIE 9048, Extreme Ultraviolet (EUV) Lithography V, 90483L (17 April 2014); https://doi.org/10.1117/12.2057761
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Finite-difference time-domain method

Photomasks

Chemical species

Transmission electron microscopy

Multilayers

Extreme ultraviolet lithography

Extreme ultraviolet

Back to Top