Paper
8 March 2014 Low-loss and flatband silicon-nanowire-based 5th-order coupled resonator optical waveguides (CROW) fabricated by ArF-immersion lithography process on a 300-mm SOI wafer
Seok-Hwan Jeong, Daisuke Shimura, Takasi Simoyama, Miyoshi Seki, Nobuyuki Yokoyama, Minoru Ohtsuka, Keiji Koshino, Tsuyoshi Horikawa, Yu Tanaka, Ken Morito
Author Affiliations +
Proceedings Volume 8990, Silicon Photonics IX; 89901D (2014) https://doi.org/10.1117/12.2038793
Event: SPIE OPTO, 2014, San Francisco, California, United States
Abstract
We present flatband, low-loss and low-crosstalk characteristics of Si-nanowire-based 5th-order coupled resonator optical waveguides (CROW) fabricated by ArF-immersion lithography process on a 300-mm silicon-on-insulator (SOI) wafer. We theoretically specified why phase controllability over Si-nanowire waveguides is prerequisite to attain desired spectral response, discussing spectral degradation by random phase errors during fabrication process. It was experimentally demonstrated that advanced patterning technology based on ArF-immersion lithography process showed extremely low phase errors even for Si-nanowire channel waveguides. As a result, the device exhibited extremely low loss of <0.2dB and low crosstalk of <-40dB without any external phase compensation. Furthermore, fairly good spectral uniformity for all fabricated devices was found both in intra-dies and inter-dies. The center wavelengths for box-like drop channel responses were distributed within 0.4 nm in the same die. This tendency was kept nearly constant for other dies on the 300-mm SOI wafer. In the case of the inter-die distribution where each die is spaced by ~3cm, the deviation of the center wavelengths was as low as ±1.8 nm between the dies separated by up to ~15 cm. The spectral superiority was reconfirmed by measuring 25 Gbps modulation signals launched into the device. Clear eye openings were observed as long as the optical signal wavelengths are stayed within the flat-topped passband of the 5th-order CROW. We believe these high-precision fabrication technologies based on 300-mm SOI wafer scale ArF-immersion lithography would be promising for several kinds of WDM multiplexers/demultiplexers having much complicated configurations and requiring much finer phase controllability.
© (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Seok-Hwan Jeong, Daisuke Shimura, Takasi Simoyama, Miyoshi Seki, Nobuyuki Yokoyama, Minoru Ohtsuka, Keiji Koshino, Tsuyoshi Horikawa, Yu Tanaka, and Ken Morito "Low-loss and flatband silicon-nanowire-based 5th-order coupled resonator optical waveguides (CROW) fabricated by ArF-immersion lithography process on a 300-mm SOI wafer", Proc. SPIE 8990, Silicon Photonics IX, 89901D (8 March 2014); https://doi.org/10.1117/12.2038793
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Waveguides

Lithography

Semiconducting wafers

Resonators

Eye

Wavelength division multiplexing

Silicon

Back to Top