Paper
18 May 2013 A semi-supervised classification algorithm using the TAD-derived background as training data
Author Affiliations +
Abstract
In general, spectral image classification algorithms fall into one of two categories: supervised and unsupervised. In unsupervised approaches, the algorithm automatically identifies clusters in the data without a priori information about those clusters (except perhaps the expected number of them). Supervised approaches require an analyst to identify training data to learn the characteristics of the clusters such that they can then classify all other pixels into one of the pre-defined groups. The classification algorithm presented here is a semi-supervised approach based on the Topological Anomaly Detection (TAD) algorithm. The TAD algorithm defines background components based on a mutual k-Nearest Neighbor graph model of the data, along with a spectral connected components analysis. Here, the largest components produced by TAD are used as regions of interest (ROI's),or training data for a supervised classification scheme. By combining those ROI's with a Gaussian Maximum Likelihood (GML) or a Minimum Distance to the Mean (MDM) algorithm, we are able to achieve a semi supervised classification method. We test this classification algorithm against data collected by the HyMAP sensor over the Cooke City, MT area and University of Pavia scene.
© (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Lei Fan, Brittany Ambeau, and David W. Messinger "A semi-supervised classification algorithm using the TAD-derived background as training data", Proc. SPIE 8743, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIX, 87431Y (18 May 2013); https://doi.org/10.1117/12.2015810
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Data modeling

Detection and tracking algorithms

Principal component analysis

Hyperspectral imaging

Image analysis

Image processing

Sensors

Back to Top