Paper
8 September 2011 Hybrid zirconium sol-gel thin films with high refractive index
Arnaud Gorin, Robert Copperwhite, Salem Elmaghrum, Colette Mc Donagh, Mohamed Oubaha
Author Affiliations +
Abstract
We describe the synthesis of optical quality thin film materials with high refractive index, employing zirconium based hybrid sol-gel precursors. As the zirconium propoxide precursor is unstable in the presence of a strong nucleophilic agent such as water, two synthesis routes have been performed employing a chelating agent and an organosilane precursor to avoid the formation of any undesired ZrO2 agglomerates, leading to organo-zirconate complexes and silicato-zirconate copolymers, respectively. The prepared hybrid sol-gel materials were deposited by spin-coating to form a transparent thin film on silicon substrates, and heat treated at 100 °C for the final stabilisation of the layer. The effect of the two synthesis routes on the optical properties of zirconium based hybrid sol-gel material is discussed. It was found that the nature and concentration of the organosilane precursor can significantly affect the structural properties of the deposited films. A correlation was also demonstrated between the concentration of the organosilane precursor and the refractive index of the material. By reducing the concentration of organosilane precursor, high refractive index materials were obtained. Similar behaviour was observed for the materials synthesised via chelating agent. The synthesis employing an organosilane precursor produces films with higher refractive index. A maximum refractive index of 1.746 was measured at 635nm for the deposited thin films.
© (2011) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Arnaud Gorin, Robert Copperwhite, Salem Elmaghrum, Colette Mc Donagh, and Mohamed Oubaha "Hybrid zirconium sol-gel thin films with high refractive index", Proc. SPIE 8191, International Symposium on Photoelectronic Detection and Imaging 2011: Sensor and Micromachined Optical Device Technologies, 81911Q (8 September 2011); https://doi.org/10.1117/12.900813
Lens.org Logo
CITATIONS
Cited by 3 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Refractive index

Zirconium

Sol-gels

Thin films

Waveguides

Silicon

Zirconium dioxide

Back to Top