Paper
15 July 2010 Large format heterodyne arrays for observing far-infrared lines with SOFIA
Author Affiliations +
Abstract
In the wavelength regime between 60 and 300 microns there are a number of atomic and molecular emission lines that are key diagnostic probes of the interstellar medium. These include transitions of [CII], [NII], [OI], HD, H2D+, OH, CO, and H2O, some of which are among the brightest global and local far-infrared lines in the Galaxy. In Giant Molecular Clouds (GMCs), evolved star envelopes, and planetary nebulae, these emission lines can be extended over many arc minutes and possess complicated, often self absorbed, line profiles. High spectral resolution (R> 105) observations of these lines at sub-arcminute angular resolution are crucial to understanding the complicated interplay between the interstellar medium and the stars that form from it. This feedback is central to all theories of galactic evolution. Large format heterodyne array receivers can provide the spectral resolution and spatial coverage to probe these lines over extended regions. The advent of large format (~100 pixel) spectroscopic imaging cameras in the far-infrared (FIR) will fundamentally change the way astronomy is performed in this important wavelength regime. While the possibility of such instruments has been discussed for more than two decades, only recently have advances in mixer and local oscillator technology, device fabrication, micromachining, and digital signal processing made the construction of such instruments tractable. These technologies can be implemented to construct a sensitive, flexible, heterodyne array facility instrument for SOFIA. The instrument concept for StratoSTAR: Stratospheric Submm/THz Array Receiver includes a common user mounting, control system, IF processor, spectrometer, and cryogenic system. The cryogenic system will be designed to accept a frontend insert. The frontend insert and associated local oscillator system/relay optics would be provided by individual user groups and reflect their scientific interests. Rapid technology development in this field makes SOFIA the ideal platform to operate such a modular, continuously evolving instrument.
© (2010) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
C. Walker, C. Kulesa, J. Kloosterman, D. Lesser, T. Cottam, C. Groppi, J. Zmuidzinas, M. Edgar, S. Radford, P. Goldsmith, W. Langer, H. Yorke, J. Kawamura, I. Mehdi, D. Hollenbach, J. Stutzki, H. Huebers, J. R. Gao, and C. Martin "Large format heterodyne arrays for observing far-infrared lines with SOFIA", Proc. SPIE 7741, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V, 77410Z (15 July 2010); https://doi.org/10.1117/12.857811
Lens.org Logo
CITATIONS
Cited by 9 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Heterodyning

Terahertz radiation

Receivers

Spectroscopy

Spectral resolution

Stars

Oscillators

Back to Top