Paper
2 March 2010 Plasticity of climbing fibers after laser axotomy
A. L. Allegra Mascaro, P. Cesare, L. Sacconi, G. Grasselli, P. Strata, F. S. Pavone
Author Affiliations +
Proceedings Volume 7548, Photonic Therapeutics and Diagnostics VI; 754853 (2010) https://doi.org/10.1117/12.840378
Event: SPIE BiOS, 2010, San Francisco, California, United States
Abstract
In the adult nervous system, different population of neurons corresponds to different regenerative behavior. Although previous works show that olivocerebellar fibers are capable of axonal regeneration in a suitable environment as a response to injury1, we have hitherto no details about the real dynamics of fiber regeneration. We coupled two photon imaging to laser-induced lesions to perform in vivo multiphoton nanosurgery in the CNS of living mice expressing fluorescent proteins to investigate the reparative properties of Climbing Fibers (CFs) in the adult CNS, following the time evolution of this plastic process in vivo. Here we show that a regenerative event may take place in a murine model in the days that follow a sub-micrometric lesion on the distal portion of the climbing fiber. Furthermore this unique model could allow, through manipulation of the viral vector, to explore in detail the biochemical mechanisms underlying the reparative process. The great potential of long-term two photon imaging, coupled to genetic manipulation, opens great opportunities to further investigate the dynamic properties of neurons and their rearrangement following an injury.
© (2010) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
A. L. Allegra Mascaro, P. Cesare, L. Sacconi, G. Grasselli, P. Strata, and F. S. Pavone "Plasticity of climbing fibers after laser axotomy", Proc. SPIE 7548, Photonic Therapeutics and Diagnostics VI, 754853 (2 March 2010); https://doi.org/10.1117/12.840378
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Californium

In vivo imaging

Neurons

Injuries

Two photon imaging

Brain

Skull

Back to Top