Paper
2 June 2005 Laser machining for smooth continuous 3-D contouring for micro airflow blades
Author Affiliations +
Abstract
This paper describes an innovative excimer laser fabrication approach for profiling optimally smooth airflow contours. The research merit of the process is its use in producing a new type of electrical transducer micro-turbine using a novel axial format. The necessary micro-machining precision for this was achieved by computer-controlling a laser beam using an elevating stage to step a moving mask across a fixed mask, i.e. a variant of dynamic mask-dragging or mask-aperturing. The moving mask image was projected on to a series of flat 600 μm wide, 1000 μm deep preform surfaces, reducing each to 50 μm thickness with curvature. Precise control of each mask increment to ablation depth and focus allowed a range of 3-D curves to be realized. The ablation rate versus surface quality was optimized throughout by ablating just 300 nm per laser pulse and using 2000 pulses spread over 90 sites. The process represents a cost effective means of using basic masks to continuously shape flat surfaces in the axial direction with high aspect ratios, high speed and precision, and is applicable to both micro streamlining and the manufacture of micro expansion nozzles.
© (2005) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Mark Heaton "Laser machining for smooth continuous 3-D contouring for micro airflow blades", Proc. SPIE 5824, Opto-Ireland 2005: Nanotechnology and Nanophotonics, (2 June 2005); https://doi.org/10.1117/12.605250
Lens.org Logo
CITATIONS
Cited by 3 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Laser ablation

Excimer lasers

Photomasks

Micromachining

Microscopes

Microelectromechanical systems

Profiling

Back to Top