Paper
12 May 2005 Reliable classification of high explosive and chemical/biological artillery using acoustic sensors
Sachi V. Desai, Myron E. Hohil, Henry E. Bass, Jim Chambers
Author Affiliations +
Abstract
Feature extraction methods based on the discrete wavelet transform and multiresolution analysis are used to develop a robust classification algorithm that reliably discriminates between conventional and simulated chemical/biological artillery rounds via acoustic signals produced during detonation utilizing a generic acoustic sensor. Based on the transient properties of the signature blast distinct characteristics arise within the different acoustic signatures because high explosive warheads emphasize concussive and shrapnel effects, while chemical/biological warheads are designed to disperse their contents over large areas, therefore employing a slower burning, less intense explosive to mix and spread their contents. The ensuing blast waves are readily characterized by variations in the corresponding peak pressure and rise time of the blast, differences in the ratio of positive pressure amplitude to the negative amplitude, and variations in the overall duration of the resulting waveform. Unique attributes can also be identified that depend upon the properties of the gun tube, projectile speed at the muzzle, and the explosive burn rates of the warhead. The algorithm enables robust classification of various airburst signatures using acoustics. It is capable of being integrated within an existing chemical/biological sensor, a stand-alone generic sensor, or a part of a disparate sensor suite. When emplaced in high-threat areas, this added capability would further provide field personal with advanced battlefield knowledge without the aide of so-called "sniffer" sensors that rely upon air particle information based on direct contact with possible contaminated air. In this work, the discrete wavelet transform is used to extract the predominant components of these characteristics from air burst signatures at ranges exceeding 2km while maintaining temporal sequence of the data to keep relevance to the transient differences of the airburst signatures. Highly reliable discrimination is achieved with a feedforward neural network classifier trained on a feature space derived from the distribution of wavelet coefficients and higher frequency details found within different levels of the multiresolution decomposition the neural network then is capable of classifying new airburst signatures as Chemical/Biological or High Explosive.
© (2005) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Sachi V. Desai, Myron E. Hohil, Henry E. Bass, and Jim Chambers "Reliable classification of high explosive and chemical/biological artillery using acoustic sensors", Proc. SPIE 5795, Chemical and Biological Sensing VI, (12 May 2005); https://doi.org/10.1117/12.603688
Lens.org Logo
CITATIONS
Cited by 3 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Wavelets

Sensors

Acoustics

Artillery

Neural networks

Neurons

Discrete wavelet transforms

Back to Top