Paper
28 October 2003 Analytical investigation of the spectra of coupled polaritons on double periodic metal surfaces
Author Affiliations +
Abstract
The results of analytical and numerical investigation of the surface plasmon-polaritons (SPP)dispersion relation on double periodical high reflecting surfaces (two-dimensional photonic crystals)are presented. The formalism is developed for gratings formed by the modulation of either optical properties or the relief of the medium. The coupling between SPP existing on the non-modulated boundary leads to the mini-gaps arising at the Brillouin-zone boundaries. The dependence of the dispersion relation upon the parameters of the problem (amplitude of the modulation, an angle between the elementary translations,etc.) is calculated for different types of symmetry that corresponds to the coupling from two to six polaritons. The specific values of the parameters corresponding to existence of the standing polariton modes, vanishing of the polariton group velocity are found. The distribution of surface charges for corresponding polariton modes is presented. The ratio between the polariton dispersion relation and the light diffraction under the condition of the polariton excitation is discussed as well. The results obtained can be used to design the two-dimensional photonic crystals with specific and given properties.
© (2003) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Alexandre V. Kats and Alexey Yu. Nikitin "Analytical investigation of the spectra of coupled polaritons on double periodic metal surfaces", Proc. SPIE 5221, Plasmonics: Metallic Nanostructures and Their Optical Properties, (28 October 2003); https://doi.org/10.1117/12.505055
Lens.org Logo
CITATIONS
Cited by 7 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Modulation

Polaritons

Diffraction

Dispersion

Technetium

Metals

Scattering

Back to Top