Paper
3 November 2003 Compiled aerosol optical depth and extinction-to-backscatter climatology for Tucson, AZ
Author Affiliations +
Abstract
The Aeronet network has had a wide-ranging impact on the study of atmospheric aerosols, both temporally and geographically. This paper examines the results of measurements from the Aeronet network from a radiometer deployed in Tucson, Arizona during 1999 and 2000. Monthly averages of aerosol optical depth and Angstrom parameter values are presented. These show that a maximum in aerosol loading occurs in summer months with an average value for optical thickness of 0.11 at 670 nm compared to 0.03 during winter months. The Angstrom coefficient shows a similar trend with largest values, corresponding to smaller-sized aerosols dominating during the summer months. These results show significant differences from results obtained from similar measurements during the period of 1975-77. In addition to optical depth, aerosol extinction-to-backscatter ratio, or lidar aerosol ratio, is calculated and examined using size distribution data available from Aeronet and Mie scatter computations. This ratio varies from an average value of near 25 in March, April, and May to values near 100 for October, November, and December. Comparison of a subset of these data to those from an independent solar radiometer support these conclusions.
© (2003) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Matthew E. Mavko, Kurtis J. Thome, and John A. Reagan "Compiled aerosol optical depth and extinction-to-backscatter climatology for Tucson, AZ", Proc. SPIE 5157, Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research V, (3 November 2003); https://doi.org/10.1117/12.506578
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Aerosols

Atmospheric particles

Radio optics

Radiometry

Atmospheric optics

Calibration

Climatology

Back to Top