Paper
18 August 2003 Properties of large-diameter shape memory alloys under cyclical loading
Author Affiliations +
Abstract
This study evaluates the properties of superelastic shape memory alloys under cyclical loading to asses their potential for applications in seismic resistant design and retrofit of civil engineering structures. Shape memory alloy bars are tested to evaluate the effect of bar size (diameter) and loading history on the strength, equivalent viscous damping, and recentering properties of the shape memory alloys in superelastic form. The bars are tested under both quasi-static and dynamic loading. The results show nearly ideal superelastic properties can be obtained in large diameter shape memory alloy bars. However, comparing these results to previous studies, the more common wire form of the shape memory alloys show higher strength and damping properties compared with the large bars. The recentering capabilities (based on residual strains) are not affected by the section size of the bar. Overall, the damping potential of superelastic shape memory alloys is low for large diameter bars, typically less than 7% equivalent viscous damping. Degradation of the superelastic properties of the shape memory alloys occurs for cyclical strain greater than 6%, leading to increased residual strains and reduction in energy dissipated. Finally, strain rate effects are evaluated by subjecting the shape memory alloys to loading rates representative of typical seismic loadings. The results show that increased loading rates lead to slight decreases in the equivalent damping, but have negligible effect on the recentering of the shape memory alloys.
© (2003) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Reginald DesRoches and Jason McCormick "Properties of large-diameter shape memory alloys under cyclical loading", Proc. SPIE 5057, Smart Structures and Materials 2003: Smart Systems and Nondestructive Evaluation for Civil Infrastructures, (18 August 2003); https://doi.org/10.1117/12.482683
Lens.org Logo
CITATIONS
Cited by 3 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Shape memory alloys

Civil engineering

Atrial fibrillation

Binary data

Bridges

Crystals

Earthquakes

Back to Top