Paper
26 June 2003 Illumination pupil fill measurement and analysis and its application in scanner V-H bias characterization for 130-nm node and beyond
Gary Zhang, Changan Wang, Colin L. Tan, John Robert Ilzhoefer, Chris Atkinson, Stephen P. Renwick, Steve D. Slonaker, David Godfrey, Catherine H. Fruga
Author Affiliations +
Abstract
A detailed characterization of across chip line width variation (ACLV) has been carried out on the latest Nikon scanners with a combination of advanced metrology techniques in Texas Instruments, including scatterometer-based image field and CD fingerprinting, lens aberrations measurement using a Litel in-situ interferometer, and illumination source imaging with a pin-hole camera. This paper describes the application of the above techniques in our investigation of the root causes for pattern CD bias between vertical and horizontal features. Illumination source radiance distribution is found sometimes to have a significant impact on V-H bias and the final overall ACLV on production wafers. Examples are given to demonstrate a comprehensive methodology that is used to quantitatively break down the overall CD errors and correlate them back to the basic optical and imaging components. It is shown through pupil-gram analysis that the ellipticity in partial coherence is typically within 1+/-1% for conventional illuminations settings on the advanced Nikon scanners while the uneven radiance distribution across the source plays a major role in V-H pattern CD bias. For scanners with low and uniform lens coma aberrations, the V-H bias after removing the contribution from image field errors is found to follow a linear relationship with the source radiance non-uniformity described also in terms of ellipticity. It is shown that radiance ellipticity is a bigger concern for off-axis illuminators. Tighter design rules patterned with off-axis illumination are more vulnerable to source radiance non-uniformity as well as lens aberrations. Illuminator induced V-H bias across the slit is compared to the signature caused by lens aberrations specifically uneven x,y-coma. Implications to exposure tool specification, control, and matching are further explored through experiments and lithography simulation for the current 130nm production and the future technology nodes in development.
© (2003) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Gary Zhang, Changan Wang, Colin L. Tan, John Robert Ilzhoefer, Chris Atkinson, Stephen P. Renwick, Steve D. Slonaker, David Godfrey, and Catherine H. Fruga "Illumination pupil fill measurement and analysis and its application in scanner V-H bias characterization for 130-nm node and beyond", Proc. SPIE 5040, Optical Microlithography XVI, (26 June 2003); https://doi.org/10.1117/12.485352
Lens.org Logo
CITATIONS
Cited by 9 scholarly publications and 1 patent.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Scanners

Fiber optic illuminators

Critical dimension metrology

Semiconducting wafers

Metrology

Monochromatic aberrations

Printing

RELATED CONTENT


Back to Top