Paper
24 July 2001 Theoretical study of magnetic and ultrasonic sensors: dependence of magnetic potential and acoustic pressure on the sensor geometry
Dominique Placko, Tribikram Kundu
Author Affiliations +
Abstract
In this paper, we describe a model based on a spatial distribution of point sources, called 'DPSM' (Distributed Point Sources Method), applied to magnetic and ultrasonic sensors modelling. Magnetic and acoustic fields are theoretically generated for two types of sensors. The sensor surface is discretized into a finite number of elemental surfaces. A point source is placed at the centroid position of every elemental surface. Point source strength is proportional to the elemental surface area for acoustic sensors and it is obtained by inverting a matrix to satisfy the equipotential boundary conditions for magnetic sensors. Total field is computed at a given point by adding fields generated by all sources. The main difference between the magnetic and acoustic field modelling is that for a magnetic sensor the magnetic potential remains constant on the sensor surface and the magnetic flux varies from point to point, while for the acoustic sensor the particle velocity remains constant on the sensor surface and the acoustic pressure varies. This difference causes an additional matrix inversion in the magnetic field modeling, which is not necessary for the acoustic field modeling. Like other numerical modeling schemes, accuracy of the computation depends on the sensor surface discretization or mesh generation. Effect of the spacing between two neighboring point sources on the accuracy of the field computation is studied and the optimum spacing for accurate numerical computation is given. For accurately modelling acoustic fields the spacing between two neighboring sources should be less than the acoustic wavelength. Flat sensors with circular and rectangular cross-sections as well as point focused concave sensors have been modelled by this technique.
© (2001) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Dominique Placko and Tribikram Kundu "Theoretical study of magnetic and ultrasonic sensors: dependence of magnetic potential and acoustic pressure on the sensor geometry", Proc. SPIE 4335, Advanced Nondestructive Evaluation for Structural and Biological Health Monitoring, (24 July 2001); https://doi.org/10.1117/12.434201
Lens.org Logo
CITATIONS
Cited by 27 scholarly publications and 4 patents.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Magnetism

Sensors

Transducers

Magnetic sensors

Acoustics

Ultrasonics

Modeling

Back to Top