Paper
25 February 1999 Quantum fluctuation in traveling-wave amplification of optical images
Author Affiliations +
Proceedings Volume 3736, ICONO '98: Quantum Optics, Interference Phenomena in Atomic Systems, and High-Precision Measurements; (1999) https://doi.org/10.1117/12.340106
Event: ICONO '98: Laser Spectroscopy and Optical Diagnostics: Novel Trends and Applications in Laser Chemistry, Biophysics, and Biomedicine, 1998, Moscow, Russian Federation
Abstract
We investigate amplification of optical images by means of a traveling-wave optical parametric amplifier. As shown recently by Kolobov and Lugiato [Phys. Rev. A 52, 4930 (1995)] for a cavity-based geometry, such a scheme can amplify images, without deteriorating their sign-to-noise ratio, thus working as a noiseless amplifier. Here we consider a configuration without cavity, which is more realistic for a possible experimental realization. We investigate in detail the quantum fluctuations of the amplifier and formulate criteria for its noiseless performance. The spatial resolution power, which guarantees noiseless amplification is estimated. We demonstrate how the optimum phase matching of a phase-sensitive wavefront of the image can improve the noise performance of the amplifier and bring it to the ultimate value achievable under given physical conditions. We discuss the effect of improvement of the signal-to-noise ratio in the case of observation of both the input and the amplified image, with an ideal photodetector of small area (i.e., much less than the coherence area of the amplifier). This improvement is due to the fact that the signal-to-noise ratio in the input is deteriorated by the observation with the photodetector of small area.
© (1999) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Ivan V. Sokolov, Mikhail I. Kolobov, and Luigi A. Lugiato "Quantum fluctuation in traveling-wave amplification of optical images", Proc. SPIE 3736, ICONO '98: Quantum Optics, Interference Phenomena in Atomic Systems, and High-Precision Measurements, (25 February 1999); https://doi.org/10.1117/12.340106
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Signal to noise ratio

Photodetectors

Optical amplifiers

Crystals

Interference (communication)

Phase matching

Amplifiers

Back to Top