Paper
3 July 1998 Dynamic heart model for the mathematical cardiac torso (MCAT) phantom to represent the invariant total heart volume
P. Hendrik Pretorius, Michael A. King, Benjamin M.W. Tsui, Karen LaCroix, Weishi Xia
Author Affiliations +
Abstract
This manuscript documents the alteration of the heart model of the MCAT phantom to better represent cardiac motion. The objective of the inclusion of motion was to develop a digital simulation of the heart such that the impact of cardiac motion on single photon emission computed tomography (SPECT) imaging could be assessed and methods of quantitating cardiac function could be investigated. The motion of the dynamic MCAT's heart is modeled by a 128 time frame volume curve. Eight time frames are averaged together to obtain a gated perfusion acquisition of 16 time frames and ensure motion within every time frame. The position of the MCAT heart was changed during contraction to rotate back and forth around the long axis through the center of the left ventricle (LV) using the end systolic time frame as turning point. Simple respiratory motion was also introduced by changing the orientation of the heart model in a 2 dimensional (2D) plane with every time frame. The averaging effect of respiratory motion in a specific time frame was modeled by randomly selecting multiple heart locations between two extreme orientations. Non-gated perfusion phantoms were also generated by averaging over all time frames. Maximal chamber volumes were selected to fit a profile of a normal healthy person. These volumes were changed during contraction of the ventricles such that the increase in volume in the atria compensated for the decrease in volume in the ventricles. The myocardium were modeled to represent shortening of muscle fibers during contraction with the base of the ventricles moving towards a static apex. The apical region was modeled with moderate wall thinning present while myocardial mass was conserved. To test the applicability of the dynamic heart model, myocardial wall thickening was measured using maximum counts and full width half maximum measurements, and compared with published trends. An analytical 3D projector, with attenuation and detector response included, was used to generate radionuclide projection data sets. After reconstruction a linear relationship was obtained between maximum myocardial counts and myocardium thickness, similar to published results. A numeric difference in values from different locations exist due to different amounts of attenuation present. Similar results were obtained for FWHM measurements. Also, a hot apical region on the polar maps without attenuation compensation turns into an apical defect with attenuation compensation. The apical decrease was more prominent in ED than ES due to the change in the partial volume effect. Both of these agree with clinical trends. It is concluded that the dynamic MCAT (dMCAT) phantom can be used to study the influence of various physical parameters on radionuclide perfusion imaging.
© (1998) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
P. Hendrik Pretorius, Michael A. King, Benjamin M.W. Tsui, Karen LaCroix, and Weishi Xia "Dynamic heart model for the mathematical cardiac torso (MCAT) phantom to represent the invariant total heart volume", Proc. SPIE 3337, Medical Imaging 1998: Physiology and Function from Multidimensional Images, (3 July 1998); https://doi.org/10.1117/12.312559
Lens.org Logo
CITATIONS
Cited by 3 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Heart

Signal attenuation

Motion models

Single photon emission computed tomography

Mathematical modeling

Blood

Imaging systems

Back to Top