Paper
29 December 1997 Fluorescent probes in biology and medicine: measurement of intracellular pH values in individual cells
Jan Slavik, Petr Cimprich, Martin Gregor, Karel Smetana Jr.
Author Affiliations +
Abstract
The application possibilities of fluorescent probes have increased dramatically in the last few years. The main areas are as follows (Slavik, 1994, 1996, 1998). Intracellular ionic cell composition: There are selective ion-sensitive dyes for H+, Ca2+, Mg2+, K+, Na+, Fe3+, Cl-, Zn2+, Cd2+, Hg2+, Pb2+, Ba2+, La3+. Membrane potential: Using the so-called slow (Nernstian dyes) or electrochromic dyes one can assess the value of the transmembrane potential. Membrane fluidity: Fluorescent probes inform about the freedom of rotational and translational movement of membrane proteins and lipids. Selective labeling: Almost any object of interest inside the cell or on its surface can be selectively fluorescently labeled. There are dyes specific for DNA, RNA, oligonucleotides (FISH), Golgi, endoplasmic reticulum, mitochondria, vacuoles, cytoskeleton, etc. Using fluorescent dyes specific receptors may be localized, their conformational changes followed and the polarity of corresponding binding sites accessed. The endocytic pathway may be followed, enzymes and their local enzymatic activity localized. For really selective labeling fluorescent labeled antibodies exist. Imaging: One of the main advantages of fluorescence imaging is its versatility. It allow choice among ratio imaging in excitation, ratio imaging in emission and lifetime imaging. These approaches can be applied to both the classical wide-field fluorescence microscopy and to the laser confocal fluorescence microscopy, one day possibly to the scanning near field optical microscopy. Simultaneous application of several fluorescent dyes: The technical progress in both excitation sources and in detectors allows to extend the excitation deeper in the blue and ultraviolet side and the detection further in the NIR and IR. Consequently, up to 6 peaks in excitation and up to 6 peaks in emission can be followed without any substantial difficulties. Application of dyes such with longer fluorescence lifetimes such as rare earth dyes gives chance for the separated detection of another six peak pairs. The literature data on simultaneous applications of several fluorescent dyes are rare, usually it is only pH and calcium, pH and membrane potential or pH and cytoskeleton changes that are mentioned. Nevertheless, I am sure that in the near future it will be quite common to employ several fluorescent dyes simultaneously. So, in a few years, you may expect to be comfortably seated in an armchair in front of the monitor screen, sip your coffee and follow simultaneously several physiological parameters trying to find out new relations among them. In this respect the potential of fluorescent probes is unsurpassed if you just recall only the discovery of calcium waves and calcium spikes during the past years.
© (1997) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Jan Slavik, Petr Cimprich, Martin Gregor, and Karel Smetana Jr. "Fluorescent probes in biology and medicine: measurement of intracellular pH values in individual cells", Proc. SPIE 3197, Optical Biopsies and Microscopic Techniques II, (29 December 1997); https://doi.org/10.1117/12.297963
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Luminescence

Yeast

Calcium

Confocal microscopy

Microscopy

Cytoskeletons

Biology

Back to Top