Paper
24 May 1995 Computer models for computation and verification of bronchial morphology
Chandrasekhar Pisupati, Lawrence B. Wolff, Wayne A. Mitzner, Elias A. Zerhouni
Author Affiliations +
Abstract
Accurate physiological measurements of the parameters like branching angles, branch lengths, and diameters of bronchial tree structures help in addressing the mechanistic and diagnostic questions related to obstructive lung disease. In order to facilitate these measurements, bronchial trees are reduced to a central axis tree. The approach we take employs first setting up a theoretical computerized tree structure, and then applying a 3D analysis to obtain the required anatomical data. A stick model was set up in 3D, with segment endpoints and diameters as input parameters to the model generator. By fixing the direction in which the slices are taken, a stack of 2D images of the generated 3D tree model is obtained, thereby simulating bronchial data sets. We design a two pass algorithm to compute the central axis tree and apply it on our models. In the first pass, the topological tree T is obtained by implementing a top-down seeded region growing algorithm of the 3D tree model. In the second pass, T is used to region growth along the axes of the branches. As the 3D tree model is traversed bottom-up, the centroid values of the cross sections of the branches are stored in the corresponding branch of T. At each bifurcation, the branch point and the three direction vectors along the branches are computed, by formulating it as a nonlinear optimization problem that minimizes the sum of least squares error of the centroid points of the corresponding branches. By connecting the branch points with straight lines, we obtain a reconstructed central axis tree which closely corresponds to the input stick model. We also studied the effect of adding external noise to out tree models and evaluating the physiological parameters. We conclude with the results of our algorithm on real airway trees.
© (1995) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Chandrasekhar Pisupati, Lawrence B. Wolff, Wayne A. Mitzner, and Elias A. Zerhouni "Computer models for computation and verification of bronchial morphology", Proc. SPIE 2433, Medical Imaging 1995: Physiology and Function from Multidimensional Images, (24 May 1995); https://doi.org/10.1117/12.209684
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
3D modeling

Data modeling

Lung

3D metrology

Nickel

3D image processing

Computer simulations

Back to Top