Paper
30 May 1995 Diagnosis of mitochondrial diseases by near-infrared spectroscopy (NIRS)
William J. Bank, Britton Chance
Author Affiliations +
Abstract
Disorders of mitochondrial metabolism are manifest by inordinate fatigue, weakness, as well as severe neuromuscular disorders. Diagnosis has required pathologic findings on muscle biopsy and identification of biochemical defects in mitochondrial respiration. NIRS, a noninvasive optical technique, permits the quantitative measurement of changes in blood volume and tissue oxygenation in vivo, at rest, during exercise, and post-exercise recovery. The dual wavelength spectrophotometer consists of an optic probe with 2 lights appropriate for red light emission. Interference filters select the wavelengths, 760 to 850 nm, appropriate to the broad bands of hemoglobin, in conjunction with silicon detectors sensitive to this infrared spectrum. In all normal test subjects, the blood volume tracing demonstrated a decreased blood volume normally seen in exercising muscle. The increase of absorbance at 760 nm, with respect to absorbance at 850 nm, reflects deoxygenation of hemoglobin and occurred promptly at the start of exercise. At the end of exercise, oxygenation returned to baseline accompanied by hyperemia. Four patients with known disorders of mitochondrial metabolism demonstrated a paradoxical oxygenation during exercise that returned to baseline at the end of exercise. Increased oxygen supplied by a normal cardiopulmonary response to exercise is not utilized and results in a pardoxical oxygenation during exercise. This simple, noninvasive technique permits an accurate measurement of oxygen utilization in the exercising limb and is a useful clinical tool in screening patients for disorders of mitochondrial metabolism.
© (1995) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
William J. Bank and Britton Chance "Diagnosis of mitochondrial diseases by near-infrared spectroscopy (NIRS)", Proc. SPIE 2389, Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, (30 May 1995); https://doi.org/10.1117/12.210026
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Blood

Absorbance

Oxygen

Tissue optics

Near infrared spectroscopy

Mode conditioning cables

Sensors

Back to Top