Paper
9 June 1994 Solar interferometry: space and ground instrumental prospects
Author Affiliations +
Abstract
Recent advances in electronics and fast computer control allow to envisage extremely high spatial resolution observations of the Sun through the use of a compact array of phased telescopes. Several space missions (SUN/SIMURIS, SUN-SV, MUST/SIMURIS) have been proposed in that respect and will be briefly presented. Prospects for use of the space techniques for a solar array on ground are also indicated. Independently from the different mission concepts, solar interferometric imaging presents a unique case in the domain of optical aperture synthesis since the field- of-view is extended (larger than the diffraction spot of a telescope) and because the high resolution structures are evolving very rapidly and are naturally complex (low fringe visibility). These severe constraints drive solar arrays' design towards `compact' configurations (i.e. in which the spatial frequencies plane is filled) and real-time `cophasing' (direct-- hardware--zeroing of phase fluctuations by fine delay lines). They also influence the choice of the focal instrumentation which is optimum when using a subtractive double monochromator tunable over a large spectral range and providing narrow band filtergrams (up to 0.1 angstrom). We review the concepts and design issues of a solar interferometer and present numerical simulations and laboratory experiments of the system required to cophase an array of telescopes on a complex and extended field-of-view. Aperture configurations and image reconstruction are also discussed as well as the specific real-time metrology aspects of a ground array (atmospheric constraints derived from the performances evaluation of the ASSI Program).
© (1994) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Luc Dame "Solar interferometry: space and ground instrumental prospects", Proc. SPIE 2200, Amplitude and Intensity Spatial Interferometry II, (9 June 1994); https://doi.org/10.1117/12.177279
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Telescopes

Interferometers

Space telescopes

Interferometry

Sun

Image restoration

Ultraviolet radiation

Back to Top