Presentation + Paper
9 May 2024 A ferroelectric phase field study of nanoindentation contact mechanics
Oluwafemi Ogunlana, William S. Oates
Author Affiliations +
Abstract
This study employs a phase field modeling framework to understand complex ferroelectric domain structure evolution near a surface that is under contact mechanical loading. Lead titanate is used as a model material to understand how indentation contact deformation leads to ferroelectric domain switching near the stress singularity of the indent. We investigate the evolution of a 180° ferroelectric domain wall using the time-dependent Ginzburg-Landau (TDGL) equation. The phase field method is used to simulate both the ferroelectric domain structures and the evolution of the contact surface. The phase field method is applied to the contact problem to facilitate computing stress concentrations from complex contact interfaces. This research is aimed at formulating a model that can deepen our understanding of ferroelectric material switching under a variety of complex surface loading to enhance fracture toughness and electromechanical material performance through deformation near the surface.
Conference Presentation
(2024) Published by SPIE. Downloading of the abstract is permitted for personal use only.
Oluwafemi Ogunlana and William S. Oates "A ferroelectric phase field study of nanoindentation contact mechanics", Proc. SPIE 12947, Behavior and Mechanics of Multifunctional Materials XVIII, 1294705 (9 May 2024); https://doi.org/10.1117/12.3010958
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Polarization

Interfaces

Mechanics

Solids

Ferroelectric materials

Elasticity

Simulations

Back to Top