The Arcus Probe is designed to measure the feedback cycle of material into and out of galaxies, and the inter-relation between these flows and the central black holes that drive many of these processes. Arcus consists of a high-resolution x-ray spectrometer (led by the Smithsonian Astrophysics Observatory; SAO) with a companion medium resolution (R ~ 24,500) far-ultraviolet imaging spectrograph covering the 970 - 1580 Å bandpass. The Arcus Ultraviolet Spectrograph (UVS) is designed in part to be a sucessor to the successful FUSE mission, with more than five-times the sensitivity in the essential Lyman UV, including rest-frame O VI 1032 ˚A, than any previous medium resolution spectroscopic instrument. The instrument consists of a 60 cm off-axis Cassegrain telescope feeding a two-channel spectrograph, with the spectra recorded on an open-face microchannel plate detector. The channels each consist of a medium resolution grating mounted to a grating selector: the G110M (970 - 1280 Å, optimized for 1000 - 1280 Å) and the G140M (1195 - 1580 Å). The Arcus UVS is led by the University of Colorado Laboratory for Atmospheric and Space Physics (LASP) and incorporates several technologies developed in the more than two decades since F USE, and matured on previous CU-LASP flight programs, including enhanced lithium fluoride protected aluminum mirror coatings (eLiF) and large-format borosilicate glass MCPs. We describe the recent development and TRL advancement of these enabling technologies, and then outline the UVS instrument and projected performance.
|