PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
WIVERN is a testbed for laboratory experiments in laser-based wavefront sensing. It emulates laser uplink from a 4m telescope with 1.6 arcsec seeing and laser back-scattering from up to 20 km. Currently there are three current wavefront sensing capabilities. The first two are from a wide-field of view (1.0 arcmin) Shack Hartmann wavefront sensor observing a constellation of point sources at infinity (reference targets, star-oriented wavefront sensing), or an image from emulated back-scattering (wide-field correlation wavefront sensing). The third is based on the PPPP concept. Other sub-systems are laser projection replicating a pupil launch, a 7x7 pupil-conjugate deformable mirror (DM), and a wide-field camera for PSF analysis. A 500 Hz rate accumulates sufficient data for statistical and machine-learning analysis over hour timescales. It is a compact design (2.1m2) with mostly commercial dioptric components. The sub-system optical interfaces are identical: a flat focal plane for easy bench reconfiguration. The end-to-end design is diffraction-limited with ≤ 1% pupil distortion for wavelengths λ=633–750 nm.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
The alert did not successfully save. Please try again later.
Nazim Ali Bharmal, David Bramall, Ariadna Calcines, Timothy Morris, Jürgen Schmoll, Lazar Staykov, "WIVERN: a laboratory experiment for testing novel laser-based wavefront sensing techniques," Proc. SPIE 12185, Adaptive Optics Systems VIII, 121856D (29 August 2022); https://doi.org/10.1117/12.2629888