Superresolution techniques based on intensity measurements after a spatial mode decomposition can overcome the precision of diffraction-limited direct imaging. We present both the experimental implementation of simultaneous spatial multimode demultiplexing as a distance measurement tool and the theoretical analysis of the actual sensitivity limits given the main experimental imperfection: cross-talks between channels. We demonstrate the distance estimation between two incoherent beams in both directions of the transverse plane, and find a perfect accordance with theoretical predictions, given a proper calibration of the demultiplexer. We show that, even though sensitivity is limited by the cross-talk between channels, we can perform measurements in two dimensions much beyond the Rayleigh limit over a large dynamic range. Combining statistical and analytical tools, we obtain the scaling of the precision limits for weak, generic crosstalk from a device-independent model as a function of the crosstalk probability and N.
|