Remote sensing of Earth at ultraviolet wavelengths offers the capability to retrieve key environmental parameters that provide remarkable insight into space weather conditions. The miniaturized UV imager (MUVI) instrument is a currently funded NASA technology development effort that expands on capability developed from recent flight experience to build and qualify a small, relatively simple UV imager that can be tuned for a range of purposes. The goal is to revisit earlier designs of suppressive imagers, obviating the need for gratings, slits, and long optical paths, redeveloping a direct imaging capability in a CubeSat type form-factor. Combining high heritage components with improved imaging technologies, MUVI provides science performance comparable to high-performance imagers developed and flown for prior research missions at much lower mass and cost points. A compelling scientific design for future missions will be to make space-based observations from multiple vantage points from one or more orbit planes. Multiple-observatory mission designs, including those implemented using the CubeSat form-factor, are more accessible now due to a great deal of research and commercial work toward miniaturization of spacecraft subsystems. It is likely that small scientific payloads will greatly benefit upcoming Heliophysics missions if appropriate technologies are developed. An overview of the MUVI instrument is described here, along with development status after year 1 of funding.
|