Presentation
3 April 2018 A new liquid spring: friction type magnetorheological damper system (Conference Presentation)
Barkan M. Kavlicoglu, Christopher Rosa, Blake Muzinich, Matt Levy
Author Affiliations +
Abstract
A controllable damper that utilizes a friction type magnetorheological gel (MRG) valve and liquid spring technology was designed, built, and characterized under this study. A high-performance MRG material was developed for this damper, where the design space constraints minimized the damper dimensions. Electromagnetic finite element analyses were performed to optimize the controllable and liquid spring valve dimensions. The liquid spring valve utilized shim stacks for asymmetric rebound and compression loading. System modeling was performed where the effectiveness of various control system algorithms in reducing the transmitted acceleration levels were analyzed. The fabricated liquid spring controllable damper was characterized, and then installed on a single degree-of-freedom quarter-car experimental system. The characterization study demonstrated the liquid spring effect, as well as the controllability of the device. The quarter car experiments revealed that the device is more effective in reducing the acceleration levels at relatively higher operating speeds (up to 11 in/s). The device was also tested for spring stiffness at elevated temperatures. It was demonstrated that the liquid spring stiffness changes minimally at high operating temperatures.
Conference Presentation
© (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Barkan M. Kavlicoglu, Christopher Rosa, Blake Muzinich, and Matt Levy "A new liquid spring: friction type magnetorheological damper system (Conference Presentation)", Proc. SPIE 10595, Active and Passive Smart Structures and Integrated Systems XII, 105952Y (3 April 2018); https://doi.org/10.1117/12.2297657
Advertisement
Advertisement
KEYWORDS
Liquids

Control systems

Electromagnetism

Finite element methods

Systems modeling

Back to Top