Paper
26 June 2017 Detection of cracks on concrete surfaces by hyperspectral image processing
Bruno O. Santos, Jonatas Valença, Eduardo Júlio
Author Affiliations +
Abstract
All large infrastructures worldwide must have a suitable monitoring and maintenance plan, aiming to evaluate their behaviour and predict timely interventions. In the particular case of concrete infrastructures, the detection and characterization of crack patterns is a major indicator of their structural response. In this scope, methods based on image processing have been applied and presented. Usually, methods focus on image binarization followed by applications of mathematical morphology to identify cracks on concrete surface. In most cases, publications are focused on restricted areas of concrete surfaces and in a single crack. On-site, the methods and algorithms have to deal with several factors that interfere with the results, namely dirt and biological colonization. Thus, the automation of a procedure for on-site characterization of crack patterns is of great interest. This advance may result in an effective tool to support maintenance strategies and interventions planning. This paper presents a research based on the analysis and processing of hyper-spectral images for detection and classification of cracks on concrete structures. The objective of the study is to evaluate the applicability of several wavelengths of the electromagnetic spectrum for classification of cracks in concrete surfaces. An image survey considering highly discretized wavelengths between 425 nm and 950 nm was performed on concrete specimens, with bandwidths of 25 nm. The concrete specimens were produced with a crack pattern induced by applying a load with displacement control. The tests were conducted to simulate usual on-site drawbacks. In this context, the surface of the specimen was subjected to biological colonization (leaves and moss). To evaluate the results and enhance crack patterns a clustering method, namely k-means algorithm, is being applied. The research conducted allows to define the suitability of using clustering k-means algorithm combined with hyper-spectral images highly discretized for crack detection on concrete surfaces, considering cracking combined with the most usual concrete anomalies, namely biological colonization.
© (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Bruno O. Santos, Jonatas Valença, and Eduardo Júlio "Detection of cracks on concrete surfaces by hyperspectral image processing", Proc. SPIE 10334, Automated Visual Inspection and Machine Vision II, 1033407 (26 June 2017); https://doi.org/10.1117/12.2269606
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Hyperspectral imaging

Image processing

Applied research

Detection and tracking algorithms

Image classification

Mathematical morphology

Image analysis

Back to Top