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Abstract

Purpose: To assess the result in orthopedic trauma surgery, usually three-dimensional volume
data of the treated region is acquired. With mobile C-arm systems, these acquisitions can be
performed intraoperatively, reducing the number of required revision surgeries. However,
the acquired volumes are typically not aligned to the anatomical regions. Thus, the multiplanar
reconstructed (MPR) planes need to be adjusted manually during the review of the volume.
To speed up and ease the workflow, an automatic parameterization of these planes is needed.

Approach: We present a detailed study of multitask learning (MTL) regression networks to
estimate the parameters of the MPR planes. First, various mathematical descriptions for rotation,
including Euler angle, quaternion, and matrix representation, are revised. Then, two different
MTL network architectures based on the PoseNet are compared with a single task learning
network.

Results: Using a matrix description rather than the Euler angle description, the accuracy of the
regressed normals improves from 7.7 deg to 7.3 deg in the mean value for single anatomies. The
multihead approach improves the regression of the plane position from 7.4 to 6.1 mm, whereas
the orientation does not benefit from this approach. Thus, the achieved accuracy meets the
reported interrater variance in similarly complex body regions of up to 6.3 deg for the normals
and up to 9.3 mm for the plane position.

Conclusions: The use of a multihead approach with shared features leads to more accurate
plane regression compared with the use of individual networks for each task. It also improves
the angle estimation for the ankle region. The reported results are in the same range as manual
plane adjustments. The use of a combined network with shared parameters requires less
memory, which is a great benefit for the implementation of an application for the surgical
environment.
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1 Introduction

The default imaging modality to assess fracture reduction, implant position, and overall outcome
during an orthopedic trauma surgery is x-ray imaging. However, the success of the surgery
cannot be clearly judged solely from the x-ray image in complex anatomical regions such as
calcaneus, ankle, wrist, or knee. Due to overlapping or convex bones, assessing the positions
of implants with respect to the corresponding bones is difficult. Therefore, the acquisition of
three-dimensional (3D) scans is recommended before releasing the patient from the hospital.
If 3D imaging is performed postoperatively, e.g., using a diagnostic computed tomography
(CT) system, not every minor finding will lead to revision surgery, which will spare the patient
the risks of additional surgery. However, recent studies have shown that intraoperative 3D im-
aging has led to corrections for up to 40% of surgeries, depending on the body region.1–10 Thus
intraoperative 3D imaging reduces the number of revision surgeries and improves the outcome of
surgeries because minor findings are also usually corrected.

For intraoperative acquisition of 3D volumes, mobile C-arm systems, which are capable of
cone-beam tomography (CBCT), are usually employed. These systems typically have a rela-
tively limited field of view with a volume edge length of about 160 to 250 mm. Consequently,
the captured anatomy section and thus the anatomical landmarks’ position and visibility may
vary substantially.

When reading a 3D volume, the volume should be aligned to the anatomical structures in a
standardized way as it is done in the radiology department. The key slices that contain anatomi-
cal structures that are decisive for assessing intervention results are called standard planes.
Typically there are three of them: the axial, coronal, and sagittal planes. From an intraoperative
3D volume, they are typically obtained by the multiplanar reconstruction (MPR) technique.
Generally, the three planes are orthogonal to each other, but in some regions, instead of these
three orthogonal planes, an oblique plane provides the required information. One example of an
oblique plane is the semicoronal plane in the calcaneus region, a variation of the coronal plane
that is not orthogonal to the axial and sagittal planes and which allows for the evaluation of the
reconstruction of the posterior talar surface.11

In Ref. 12, it was shown that the accuracy of surgeons adjusting the standard MPRs highly
depends on the region. In the lumbar spine region, where the planes can be adjusted using well-
defined landmarks, the interrater difference was about half compared with the proximal femur
region, where these kinds of landmarks are missing. The mean interrater variance was measured
up to 6.3 deg for the normals and up to 9.3 mm for the plane position.

As mobile C-arms systems lack information about the spatial relationship between the system
and the anatomical region, the adjustment of the plane position and orientation needs to be per-
formed at the workstation in the operating room. This alignment of the planes is a manual task
that takes 46 to 210 s depending on the experience level of the surgeon and, thus, is a time-
consuming step in a surgery.13,14

Slice alignment in acquired volumes is a rather old topic. Although the initial focus was on
automatic rotation of the brain CT,15–17 with the invention of 3D capable mobile C-arms systems
—which were used mainly in orthopedic and trauma surgery environments—other body parts
such as extremities attracted increased attention from researchers. Speeded up robust features
were used by Brehler et al.14 to register the acquired volume with an atlas that has annotated
MPR planes. This method requires the careful choice of the atlas and feature extraction method,
but even then, this approach has a limited capture range of rotation. Therefore, in Ref. 18 shape
models with attached labels for the MPR planes were used. For generating the shape models,
multiple volumes need to be manually segmented, which is time-consuming. To account for
small volume sizes that lead to cropped bones, and to be invariant to different metal implants
positions, much effort and domain knowledge during the registration was applied to obtain a
robust algorithm for one region. This leads to a long execution time of 23 s for the shape model
registration and the subsequent plane regression.

Artificial intelligence systems allow for performing this task in a considerably faster time.
An active research field for standard plane regression task is ultrasound imaging, for which in
Ref. 19 probabilistic boosting trees were used to estimate nine transform parameters of the target
MPRs using a multistage approach. Although it has a complex algorithmic design, this method
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achieves an average rotation error of 11.3 deg�8.0 deg, which does not meet clinical require-
ments. Li et al.20 proposed an iterative approach in which a CNN repeatedly estimates the trans-
form between a two-dimensional (2D) plane and the standard plane. Using this approach, they
circumvent a fully 3D approach as only a small number of plane samples and updates are nec-
essary until the regression converges. The method, which predicts the transformation parameters
for one plane at a time, achieves a rotation error of 12.7 deg and 12.6 deg for the transventricular
and transcerebellar planes, respectively. Similar to the approach of Lu et al., this inference error
substantially exceeds the reported interrater variance. Especially for more complex anatomies in
which the 3D spatial information cannot be captured well on 2D projections and more large-scale
structures that spread the entire field of view are of interest, a 3D-based algorithm could be
beneficial.

In a more general domain, spatial transformer networks (STN)21 predict the parameters of an
affine transform matrix that is used to spatially manipulate feature maps in a convolutional archi-
tecture. No direct supervision for the transform is used, allowing the network to optimize toward
a spatial configuration that maximizes the performance of the actual supervised target task. The
Ω-net by Vigneault et al.22 modifies this approach by estimating the transform parameters for
direct manipulation of the input image data. Based on the feature maps of a prior segmentation
CNN, direct ground truth for the transformation parameters is used to bring the input images to
a canonical form that better suits the downstream segmentation task. Despite the reported
rotational transformation error being promising (95% of rotation errors within �0.63 rad),
the additional segmentation module imposes computational overhead, which is unwanted in
a surgical setting where expected execution speed and hardware limitations favor rather light-
weight algorithms.

Martín Vicario et al.23 used a PoseNet for the regression of the plane parameters. These plane
parameters can be interpreted as transformation parameters. Comparing the structure of the
PoseNet with that of the STN, it can be clearly seen that the convolutional layers resemble the
localization network and the fully connected layers resemble the final regression layer. Thus,
Martín Vicario et al.23 avoided the additional overhead of the segmentation introduced by the
Ω-net while retaining the approach of supervising the transform parameters, which are of interest
for the current task.

In Ref. 23, separate networks were used for different anatomical regions. For each region, a
single network for the regression of all three plane parameters achieved the best performance.
However, they did not analyzed how one single network performed for all body regions.

This article contributes in multiple ways:

- We extend our initial ablation study presented in Ref. 23 by a comparison of four different
MPR plane parameter representations, including an additional rotation representation and
comparing it with the previously published results. We also increased the number of evalu-
ated body regions by adding proximal tibia (knee) and distal radius (wrist) to the calcaneus
and ankle.

- We add a study of the single-task approach performance of dependency on the number of
volumes, analyzing the generalization problem given the number of available data.

- We analyze different multitask learning (MTL) approaches to improve the performance of
the baseline algorithm. Typically, the number of available volumes per body region is
small. Caruana24 showed that MTL can help to find the right shared representation for
related tasks when only a little data is available for the single tasks. Therefore, simulta-
neous learning for several tasks can help to find more appropriate representations and thus
reduce the risk of overfitting. Furthermore, such combined training of MPR regression for
different body regions can help to improve regression performance. We want to make use
of this property of MTL in this work.

The approach of MTL also has a practical benefit: the MPRs are adjusted after the recon-
structed volume was loaded into the volume viewer, and the body region of the volume is clas-
sified. Then, by having the body region class derived, a single task network is chosen and loaded
from a hard drive to a graphics card. Measurements show that the parameter loading takes up to
1 s. A combined network, which can be used for the regression of MPRs in several body regions,
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is loaded once and then stays in memory, which is beneficial as it decreases the waiting time
for the surgeon. Therefore, we compare two strategies with the results of region-specific net-
works. Both MTL strategies utilize a common encoder structure. The first approach uses a single
head consisting of two fully connected layers for the different body regions, and the second
approach—a multihead approach—implements separate heads for the individual body regions.

In Sec. 2, we present the employed mathematical description of planes. We describe the
normalization of the coordinate system and introduce the different neural network architectures
that we want to compare. Furthermore, the cost function for optimization is introduced. The
implementation and the data that we use for training and testing, as well as the study design,
are described in Sec. 3. After that, we present and discuss the results of our experiments in Sec. 4.

2 Methods

2.1 Plane Description

In this section, we recapitulate what MPRs are and how an MPR plane are described. MPRs are
plane intersections of a volume. An MPR plane is described by its center position A and the
linearly independent unit vectors eu and ev showing in the directions of the rows and columns.
Each point on the plane fulfills the following equation:

EQ-TARGET;temp:intralink-;e001;116;501Pλ;μ ¼ Aþ λeu þ μev: (1)

The plane normal ew is the cross-product of these two direction vectors. Thus, the MPR plane
can be associated with a translation defined by A and a rotation defined by ew. These two trans-
formations define which structures the plane displays. The choice of eu and ev being orthogonal
to ew defines the in-plane rotation of the displayed content. In the case of three orthogonal stan-
dard MPRs, the MPR planes may share the same orientation vectors of course with different
meanings. For the semicoronal plane, however, ev and thus ew are different from the orientation
vectors of the axial and sagittal MPR plane. To obtain a generic framework, we opt for a separate
regression of the MPR rotation. Additionally, we regress the center position of the plane and not
the intersection point; thus, A is different for all planes.

Based on the parametrical description, we derive three additional ways to describe the pose of
the plane. Previous studies25,26 have shown that the rotation representation can impact the quality
of the algorithm. As we show, dependent on the representation, loss functions that are connected
more closely to the error can be selected.

Rewriting Eq. (1), the point Pλ;μ is also described as

EQ-TARGET;temp:intralink-;e002;116;299Pλ;μ ¼
�
eu ev ew A
0 0 0 1

�264
λ
μ
0

1

3
75: (2)

So the plane can be associated with an homogeneous transformation T from the plane
coordinate system to the volume coordinate system, which consists of a 3 × 3 rotation matrix
R ¼ ½euevew� and a three-element translation vector t ¼ A

EQ-TARGET;temp:intralink-;e003;116;195T ¼
�
R t
0 1

�
: (3)

By the construction of R, its nine parameters are highly coupled. So, the column vectors are
normalized, the dot product of two vectors is zero, and one column vector is calculated by the
cross product of the other two vectors. These properties are utilized by the 6D method.26 With
this method, the values of two vectors are estimated by the neural network. Typically, the first
two columns are utilized. However, it might also be favorable to regress the first and the third
column instead of the second column as it encodes the normal of the plane, which itself is part
of the score function [Eq. (8)], which will be introduced below. We denote the 6D method,
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which regresses the parameters for the x and y directions with 6Dxy, and the one that regresses
the x and z directions with 6Dxz. After regression of the values, each column vector is normal-
ized, and the missing column vector is calculated as the cross product. As the matrix is a pure
rotation matrix, its entries are in the range of ½−1; 1�.

A more common way to regress rotation parameters is to decompose the matrix into Euler
angles or use a unit quaternion representation. Euler angles suffer from discontinuous values,
whereas the quaternion representation does not have this problem. To overcome the limitation for
Euler angles, we follow Baltruschat et al.25 and Kausch et al.12 and do not directly regress the
angular value but regress their sine and cosine values. The actual angle value is then calculated
from the regressed values using the atan 2 method. Another advantage of this method is that the
parameter range of the values is compressed into the range ½−1; 1�. The same range applies to the
values of the quaternions.

The translation is normalized with respect to the volumes’ dimensions and thus also lies in
the range of ½−1; 1� with the origin placed at the center of the volume.

2.2 Separate and Combined Networks

Because in Ref. 23 the regression of the MPR plane parameters of only two body regions was
studied, in the experiments for this work, four body regions were included. Thus, the question of
how one single network performs for all body regions arises.

In preliminary experiments, we compared the performance of the VGG-16,27 ResNet-34,28

and PoseNet29 networks. We observed that the PoseNet generalized better and was more robust
compared with the other two architectures. Therefore, we chose the PoseNet as the baseline
network for our study [Fig. 1(a)].

The PoseNet consists of five convolutional layers and three fully connected layers. The last
layer has as many output nodes as regressed values. The topology of this baseline network is
listed in Table 1. When we use this network for regression of the plane parameters, it is agnostic
about the body region for which the planes’ parameters need to be calculated.

As in Ref. 23, this information was provided by selecting the correct individual network. We
want to compare the performance of this base network with a multihead approach with a shared
convolutional feature extraction but individual fully connected regression heads for each ana-
tomical region [Fig. 1(b)].30 During inference, the knowledge about the body region is used to
select the head and output nodes that correspond to the given body region. During backpropa-
gation, the error gradients for all other body regions are set to zero. Thus only parameters within
the fully connected layers belonging to the selected body region and those within the convolu-
tional layers are updated.

(a) (b)

Fig. 1 Schematic visualization of the analyzed network architectures. (a) Single-head network
without providing body region information to the network. The five convolutional blocks consist
of a 3D convolutional layer (red), followed by a ReLU activation function (orange), batch normali-
zation (brown), and a max-pooling operation (yellow). The obtained features are fed into three fully
connected layers (green). (b) Multihead network with convolutional blocks shared across body
regions and individual fully connected layers for the different body regions.
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2.3 Augmentation and Value Normalization

During training, online augmentation of the volumes is employed. The spatial augmentation
includes random rotation within the interval ½−45; 45� deg, random spatial scaling of the
volume by a factor in the range [0.95, 1.05], translation by ½−12;12� mm, center cropping,
and subsampling. All of the aforementioned augmentations were applied with a probability
of 0.5 and were sampled uniformly from the respectively given range. Additionally, mirroring
in the x direction is added with a probability of 0.5, which allows for simulating left-right hand-
edness of the volume. These spatial operations are composed by combining their representation
by homogeneous matrices into a single composite matrix. The homogeneous transform matrix is
given as

EQ-TARGET;temp:intralink-;e004;116;388Tm ¼ TrTsTtTR; (4)

where Tr, Ts, Tt, and TR represent the subsampling, scaling, translate, and rotation homo-
geneous matrices, respectively. This implementation helps to speed up the calculation and
reduces the number of performed interpolations to one.

Thereafter, an intensity augmentation is implemented to simulate that the hounsfield unit
(HU) values of mobile C-arm devices are generally not as well calibrated as those of CT systems.
Thereto, the value of 1000 HU is added to the interpolated HU values, and the result is multiplied
by a factor uniformly sampled from the range [0.95, 1.05]. For normalization, the approach of
Martín Vicario et al.31 was implemented: a windowing function wðxÞ is applied after clipping the
volume intensity values to the range of ½−490;1040� HU and rescaling it to [0, 1]. The resulting
intensity value before applying the windowing function is given as

EQ-TARGET;temp:intralink-;e005;116;237cðxÞ ¼
(
0 if x < min;
fðxþ1000Þ−min

max−min
if min < x < max;

1 if x > max :
(5)

where f represents the random factor. The windowing function is defined as

EQ-TARGET;temp:intralink-;e006;116;170wðxÞ ¼ 1

ð1þ egð0.5−xÞÞ ; (6)

with a minimum and maximum values dependent gain factor. The gain factor is given as

EQ-TARGET;temp:intralink-;e007;116;113g ¼ log

�
1 − y
y

�
∕0.4; (7)

Table 1 Structure and parameter layout of the baseline network.

Block Input resolution # Input channels # Output channels

CNN1 72 × 72 × 72 1 8

CNN2 31 × 37 × 31 8 16

CNN3 16 × 19 × 16 16 32

CNN4 8 × 10 × 8 32 64

CNN5 4 × 5 × 4 64 228

FC1 1 × 1 × 1 10,240 1300

FC2 1 × 1 × 1 1300 50

FC3 1 × 1 × 1 50 # parameters
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where y ¼ 0.02ðmax−minÞ. In contrast to min–max normalization, it reduces the signal
variance of metal and air, which typically contains little to no information about the plane’s
parameters.

2.4 Postprocessing of Regressed Values

In Ref. 23, it was shown that a combined regression of the parameters of the three planes is
beneficial compared with training separate networks for each plane. So the accuracy can be
improved when the planes are redundantly regressed. In the same publication, it was also shown
that the training does not benefit from an additional orthogonality constraint on the regressed
values. Therefore, we decided to regress the parameters of the planes in all of the presented
architectures decoupled and adjust them afterward algorithmically.

As presented in Ref. 23, the axial plane is the most accurately regressed in the anatomical
regions. Therefore, it is taken as reference plane for the other planes. This means that the in-plane
rotation of the coronal and the sagittal plane is corrected such that the intersection of the axial
plane at these planes is at 0 deg. Thereafter, in cases in which the planes are orthogonal to each
other, the normal direction of the sagittal plane is adjusted to be orthogonal to the axial and
coronal planes.

It can be shown that this kind of postprocessing helps to improve the accuracy of the normal’s
angle and inplane rotation by up to 1.89 deg. For more details, see Appendix A.

3 Experiments

3.1 Data Sets

Our data set consists of 160 volumes of the calcaneus region, 220 volumes of the ankle region,
274 volumes of the knee, and 250 volumes of the wrist. All volumes were acquired with a mobile
C-arm system Cios Spin from Siemens Healthineers and reconstructed offline with the
Feldkamp–David–Kress algorithm using parameters equal to the product standard settings.
The volumes have a uniform resolution of 5123 voxels and a field of view of ð160 mmÞ3.
They were partly acquired after an orthopedic surgery for assessing the surgical result and partly
from cadavers that were prepared for surgical training. The cadaver data sets were typically
scanned twice: once without any metal and once with metal objects put on the surface of the
cadaver. We also obtained volumes of cadavers with various metal implants acquired during
surgical training. The exact distribution of the data sets is listed in Table 2. All available volumes
were included in the data set, without any constraint on the positioning of the body part of
interest. The volumes were corrected for incorrect patient position description according to the
digital imaging and communications in medicine (DICOM) image meta information. For each
body region five data splits were created, taking care that volumes of the same patient belonged
to the same subset and that the distribution of the data set’s origin was approximately the same as
in the total data set. For all volumes, standard planes were defined according to the clinical
definition provided in Ref. 11. Sketches of the planes are displayed in Fig. 2.

Table 2 Number, origin, and realism with respect to metallic objects of the volumes.

Cadaver Clinical
Total

Metal implants Metal outside No metal Metal implants

Calcaneus 9 63 62 26 160

Ankle 36 61 56 67 220

Knee 65 68 70 71 274

Wrist 0 101 102 46 249
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For the ankle, knee, and wrist volumes, axial, coronal, and sagittal MPRs were annotated, and
for the calcaneus data sets, axial, sagittal, and semicoronal planes were annotated. This was done
by a medical engineer after 5 h of training using a syngo XWorkplace VD20 that was modified to
store the plane description. Axial, sagittal, and coronal MPRs were adjusted with coupled MPRs.
The semicoronal plane was adjusted thereafter with decoupled planes. The annotation validity
was verified by an expert physician and additionally by a senior medical engineer.

3.2 Performance Metric

As an evaluation metric to compare the performance of the networks, we use a weighted average
over the individual error values of the three regressed planes:

EQ-TARGET;temp:intralink-;e008;116;473p ¼ 1

#planes

X
j∈planes

0.2dj þ 0.6ϵn;j þ 0.2ϵi;j; (8)

where dj denotes the mean error of the absolute translation of the center in the direction of the
j’th plane’s normal. ϵn;j is the deviation of the normal vectors ew, and ϵi;j is the in-plane rotation
error calculated as the mean difference angle of eu and ev, after projecting the directions on the
plane defined by the annotation. The different weights in Eq. (8) were chosen heuristically and
reflect that the normal has the most complex effect on the result. For this normal to be corrected,
out-of-plane rotations would be necessary, whereas in-plane rotation and plane translation are
easy-to-fix components.

In the results tables below, the mean and standard deviation of the median prediction errors of
the folds are represented.

3.3 Study Design

Before investigating a combined regression network for multiple anatomies, some further experi-
ments were carried out to evaluate the performance of the baseline network. We have seen in
Sec. 2 that there are several possibilities for parameterizing rotations. In addition to Martín
Vicario et al.,23 the 6Dxz method was introduced, taking into account that the main contribution
to the performance metric comes from angular deviation of the normals. Therefore, as the first
experiment, a comparison of the representation with Euler angles, quaternions, 6Dxy, and 6Dxz is
performed for the four body regions.

The best performing representation is used in the subsequent experiments.
In Ref. 23, the question of whether better results can be expected with more data samples was

kept open. Because the number of available volumes is fixed, we incrementally reduce the num-
ber of volumes used for training. For this, the training for the different body regions is repeated
using 100%, 80%, 60%, and 40% of the volumes in the training split, while keeping the test
volumes unchanged.

Following the evaluation of the baseline model, different experiments were carried out to
evaluate the performance of using a single model for all body regions. First, we trained a single
network for all body regions without providing any further class information. Second, a multi-
head architecture [Fig. 1(b)] is used: all body regions share the convolutional feature extraction
layers but are individually processed in separate regression heads consisting on three fully

Fig. 2 Representation of the 3D definition of axial (red), (semi-)coronal (blue), and sagittal (green)
standard planes in the calcaneus, ankle, knee, and wrist.
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connected layers for each anatomical region. To overcome the imbalance between the different
classes, the volumes were randomly over-sampled from the minority classes with a weight given
by the number of volumes from a given class.

3.4 Implementation

The models are implemented in PyTorch ðv:1.5.1Þ and trained on Windows 10 systems with
32 GB RAM and 8 GB NVIDIA RTX 2070S. The weights are initialized by the He et al.
method.32 The network is trained by a minibatch gradient descent optimizer with momentum.
For optimization of the network parameters, the mean squared error between model prediction
and ground truth was calculated at each output node. The total number of epochs was set to 400,
verifying training convergence of all model variants. For the selection of the learning rate, learn-
ing rate decay, step size, momentum, and batch size, a hyperparameter optimization was per-
formed (for details of hyperparameter optimization see Appendix B).

4 Results

As can be observed in Table 3, the evaluation of the different rotation representations in the base
model shows that the 6D method outperforms the Euler and quaternion representations in all

Table 3 Summarized results of evaluation of Euler angles, quaternions, 6Dxy , and 6Dxz rotation
representations in standard plane regression of calcaneus, upper ankle, knee, and wrist regions.

d (mm) εn (deg) εi (deg) Score

Calcaneus

Euler 14.39 ± 1.64 8.93 ± 1.60 9.99 ± 0.75 10.23 ± 1.11

Quat. 9.93 ± 2.53 9.96 ± 1.75 9.57 ± 1.52 9.87 ± 1.65

6Dxy 9.94 ± 1.92 8.08 ± 0.38 8.09 ± 0.45 8.46 ± 0.63

6Dxz 9.31 ± 1.10 8.23 ± 0.69 9.42 ± 1.02 8.68 ± 0.65

Ankle

Euler 7.78 ± 0.36 6.98 ± 0.77 7.52 ± 0.76 7.25 ± 0.66

Quat. 5.00 ± 0.09 8.16 ± 0.79 8.31 ± 0.71 7.56 ± 0.63

6Dxy 5.43 ± 0.25 6.61 ± 0.34 6.37 ± 0.31 6.32 ± 0.25

6Dxz 5.41 ± 0.49 6.17 ± 0.78 7.32 ± 1.06 6.25 ± 0.65

Knee

Euler 6.81 ± 0.65 6.59 ± 1.05 7.36 ± 1.54 6.79 ± 0.96

Quat. 6.82 ± 0.72 9.45 ± 0.67 10.54 ± 1.22 9.15 ± 0.59

6Dxy 6.81 ± 0.47 6.71 ± 0.63 7.07 ± 0.95 6.80 ± 0.55

6Dxz 7.15 ± 1.16 7.19 ± 0.52 8.22 ± 0.62 7.39 ± 0.49

Wrist

Euler 7.45 ± 1.00 8.35 ± 1.66 9.82 ± 1.38 8.48 ± 1.31

Quat. 8.46 ± 1.93 11.31 ± 1.87 13.47 ± 2.48 11.22 ± 1.83

6Dxy 7.27 ± 1.08 7.74 ± 1.14 8.72 ± 0.64 7.85 ± 0.94

6Dxz 7.21 ± 1.02 7.21 ± 1.06 9.37 ± 1.08 7.64 ± 0.84

Note: Bold values represent the lowest values of error class for each body region.
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body regions except the knee. For this region, similar performance to the best representation, the
Euler angles, is reached. Among the 6D methods, no (noticeable) difference in performance
between 6Dxz and 6Dxy can be observed. Thus, using the normal in the directly obtained values
and consequently also in the cost function does not generally improve the quality of the planes
parameter regression. In two-body regions, we observed a small reduction in the mean error of
the estimated normals, whereas an error increase was registered for the other two regions. In all
cases, the in-plane rotation performance got significantly worse. The position estimation error of
the planes was approximately the same for both representations. Due to these reasons, the 6Dxy

variant was chosen for the remaining experiments. The use of sine and cosine representations of
the Euler angles instead of the raw angle values shows superior performance over the quaternion
representation for the estimation of the plane normal. Looking at the performance score that
weights all metrics (Sec. 3.2), the Euler angles show better results in three body regions com-
pared with the quaternions.

The performance analysis of the baseline model upon reducing the amounts of training data
(Fig. 3) reveals that, in the ankle body region, 174 volumes are sufficient for finding good results.
For the other body regions, the number of provided volumes should be increased to obtain the
best possible results. Compared with the ankle, the other regions show a larger variance in shape
and joint angulation, and thus more training data is needed to capture all different shapes. It can
be observed that calcaneus, knee, and wrist regions all show similar performance characteristics
at reduced amounts of training data.

The comparison of the multihead networks (Table 4) shows that a combined network that
jointly estimates the parameters of the planes for different body regions can improve the accuracy
of the planes positions. For calcaneus, ankle, and knee, the improvement is substantial. However,
for the angle regression task, this network variant yields inferior results for calcaneus and wrist.
As the angular errors have a higher impact on the score, the overall performance is inferior for
these two body regions. The multihead network proves to be significantly better for the ankle and
knee regions than individual models with a p-value, in both cases, that is lower than 0.001. For
the calcaneus region, the single-task network and the multihead network have about the same
performance, with their mean performance score and rotation errors lying in each others range of
standard deviation. The p-value shows that the difference between these two methods is not
significant. Only for the wrist body region are the angle errors, and thus also the score, signifi-
cantly worse compared with the single task network. For this region, the multihead network
achieved the worst values compared with all MTL network variants.

Across all experiments we could see that the estimation of the position can be improved
by the MTL approaches (Table 4). However, the angle estimation for both the normals and the
in-plane rotation do not benefit from the MTL approach (Fig. 4).

Fig. 3 Evolution of the performance score upon reduction of the number of samples used in the
training split in calcaneus, ankle, knee, and wrist body regions. From left to right, the number of
volumes for evaluation of each body region correspond to the results of training with 40%, 60%,
80%, and 100% of the total number of samples in the train set.
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Fig. 4 Individual distribution of plane and distance errors per anatomy obtained by the multihead
network.

Table 4 Summarized results of the different networks including the use of single-task models
(a model for each anatomy), the model for training all anatomies using a single head, and the
multihead model. The p-value is obtained by applying a paired t -test between the score results
of single-task models and the singlehead and multihead models.

d (mm) εn (deg) εi (deg) Score P-value

Calcaneus

Single-task 9.94 ± 1.92 8.08 ± 0.38 8.09 ± 0.45 8.46 ± 0.63 —

Single-head 9.17 ± 0.64 9.18 ± 1.21 8.87 ± 1.34 9.12 ± 1.03 <0.001

Multihead 7.44 ± 0.31 9.16 ± 1.80 8.55 ± 0.88 8.69 ± 1.23 0.037

Ankle

Single-task 5.43 ± 0.25 6.61 ± 0.34 6.37 ± 0.31 6.32 ± 0.25 —

Single-head 6.34 ± 0.77 9.71 ± 1.98 9.64 ± 1.90 9.02 ± 1.59 <0.001

Multihead 4.47 ± 0.33 6.08 ± 0.45 6.61 ± 0.65 5.86 ± 0.40 <0.001

Knee

Single-task 6.81 ± 0.47 6.71 ± 0.63 7.07 ± 0.95 6.80 ± 0.55 —

Single-head 6.71 ± 0.72 8.04 ± 0.58 8.14 ± 1.10 7.79 ± 0.53 <0.001

Multihead 5.62 ± 0.68 6.70 ± 1.28 6.77 ± 0.81 6.49 ± 1.05 <0.001

Wrist

Single-task 7.27 ± 1.08 7.74 ± 1.14 8.72 ± 0.64 7.85 ± 0.94 —

Single-head 6.42 ± 0.75 10.34 ± 2.82 10.52 ± 2.04 9.59 ± 2.15 <0.001

Multihead 7.03 ± 1.16 10.50 ± 1.73 11.15 ± 1.29 9.93 ± 1.41 <0.001

Note: Bold values represent the lowest values of error class for each body region.
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For a better understanding of this result, we compared the volumes contributing to the 10%
best scoring results with those contributing to the 10% worst scoring results. The presence of
metallic objects such as screws or plates were not observed as a source for these errors. We also
discarded the possibility that the regression error was higher in the volumes in which only part of
the relevant anatomy is shown. For these problematic cases, the algorithm is quite robust.
However, in these volumes, we realized that the patient positioning was done in a different way
in comparison with the standard, e.g., prone or left instead of supine or focus on the proximal
femur instead of the tibial head. The high variance in positioning of the knee joint results in a
substantially larger amount of outliers with performance scores >20. In comparison, the amount
of outliers is decreased for the wrist joint, where standardized positioning is easier to achieve due
to the small size and flexible configuration of the connecting anatomy. Thus, if the surgical
setting permits it, it is recommended that the anatomy and the patient are positioned as uniform
and standardized as possible, so the number of high-error observations is reduced.

Because the employed flip and rotation augmentation did not fully cover this variance in
pose, additional training data needs to be added to handle this. The outliers in Fig. 4 are observed
for body regions that were placed in clinically irrelevant positions and can be associated with this
constraint.

Figures 5–7 show samples of the central planes of clinically acquired CBCT volumes and
compare them with the manually adjusted standard planes and the automatically inferred

Fig. 5 Example of automatic plane regression results by the multihead network for the clinical
wrist data set.
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predictions by the multihead network. For some cases, the algorithm was able to correct for
in-plane rotation by 180 deg (Fig. 5) or for plane flips (Fig. 6). In contrast, Fig. 7 shows an
error case in which the axial plane was predicted with a rotational offset of ∼90 deg, resulting
in large deviations from the target standard planes.

5 Discussion and Conclusion

In this paper, we investigate the regression of standard planes for four different body regions. The
volumes for which the standard planes should be regressed are acquired with mobile C-arm
devices and therefore have a limited field of view. Furthermore, there is no standardized relation-
ship between the C-arm device and the body region of interest, which means that the represen-
tation of the body region in the acquired volumes is not consistent. This also applies to the
position of the body region in relation to the operating table. The target body regions are also
in close proximity to flexible joints, such as knee, wrist, or ankle, leading to great variability of
the input data and thus to considerably higher task complexity.

Despite this complex setting, our proposed method yields encouraging results with low
median errors for the regressed angles and positions. The task of regressing the planes

Fig. 6 Example of automatic plane regression results by the multihead network for the clinical
calcaneus data set.
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parameters can be performed equally well for orthogonal and oblique planes. Although axial
planes are typically well regressed, the overall score is deteriorated by the coronal and sagittal
planes. The normals of these planes are typically not as well defined, and small rotations by a few
degrees are hardly noticed, even for a well-trained eye.

The experimental results reveal that the single-task networks already achieve very good
accuracy. The ablation study on the required amount of data shows that, by adding further data
to the training, we still obtain improvements in the achieved scores. Thus, we face the problem of
generalization in three of four body regions.

Because the single-head MTL approach cannot improve over the single-task performance,
we argue that a single head does not provide the required model complexity needed to learn an
appropriate representation of data and task distribution. These shortcomings could be addressed
by performing feature abstraction and combination in smaller consecutive steps, for example, by
adding intermediate fully connected layers. This reasoning is supported by the observation that
only the additional task-specific parameters of the multihead approach reduced the positioning
and angulation errors of the standard planes.

The performance increase of the multihead approach mainly comes from an increase in
position accuracy for all body regions—only slightly for the wrist but remarkable for the
other regions. For this subtask, the pursuit for more robust estimates using feature sharing was

Fig. 7 Failure example of the automatic plane regression by the multihead network for the clinical
calcaneus data set.
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successful: the position of the MPR planes at or near a joint gap for all body regions is likely to
benefit from the robust features. For the direction estimation, the shared features provided a
benefit only for the ankle. Especially for the wrist, for which the sizes of the relevant structures
are smaller compared with the lower extremities, but also for the calcaneus, where the direction is
not defined by the axis of a long bone, using a shared feature set has led to even higher angulation
errors.

In the case that a larger amount of data is available, we see further potential to reduce the error
for all network architectures. Then, no substantial differences between the analyzed architecture
variants are to be expected. However, the MTL approach will help reduce the number of stored
parameters and facilitate a common network for standard plane regression. Also, the network
parameters need not be loaded depending on the scanned body part, which saves time during the
execution.

The results show that good angle regression performance is obtained when the volumes are
acquired with the body aligned to the imaging system axes as well as when the anatomy mod-
erately deviates from the standard positioning. However, it fails in cases of severe deviations,
such as when the body is rotated by more than 90 deg. For these cases, the applied augmentation
pipeline does not help. The augmentation did not cover flips in the y direction because, in clinical
practice, an upside-down flip of a wrist comes with a modification of configuration. In the case of
the upper ankle or calcaneus, the upper ankle joint gets stretched more. Thus, applying the aug-
mentation does not lead to clinically relevant data sets. Because at the present stage additional
clinical data are not available and their clinical acquisition is seldom, more cadaver data are
needed to sufficiently represent those poses. This also means that the results presented in this
work do not show the full potential of this approach.

Nevertheless, the presented results with a mean error of the normal’s regression being 7.3 deg
and mean error of the plane position being 6.1 mm meet the reported interrater variance in
similar complex body regions of up to 6.3 deg for the normals and up to 9.3 mm for the plane
position.12

Kausch et al.12 showed that human performance at adjusting the planes highly depends on
the target region. In regions with well-defined landmarks and few anatomical variations, the
plane adjustment’s interrater variance is low. In regions with well-defined landmarks and few
anatomical variations, the plane adjustment’s interrater variance is low. However, this variance is
substantially higher in regions for which less reliable landmarks can be identified. For the pre-
sented anatomies, no such variance estimates are available yet. This limits the interpretability of
our results because no well-defined reference values for clinically required precision can serve as
a standard. Although such a comparative analysis should be addressed in follow-up studies, we
generally see promising results of our proposed method that fit well within the error bounds of
related studies of anatomies with comparable complexity.12

A benefit of the direct standard plane parameter regression is the reduced amount of
annotation data per data set. Costly annotations of landmarks or even segmentation of
bones can be omitted and are replaced by comparably cheap adjustments of the standard
planes. Also, the implementation of specific rules per body region to obtain the parameters
of the landmarks is omitted. Thus, the direct MPR plane parameter regression provides a
generic tool for plane parameter estimation: it requires cheap training labels, and it integrates
well into the surgical workflow through a fast adjustment of the planes during loading of the
volume.

6 Appendix A. Postprocessing of Regressed Values

In this section, the influence of the postprocessing of the regressed angles is evaluated. For
that, ϵn and ϵi are calculated with and without postprocessing and their values are compared.
The analysis of the influence on the postprocessing to the single parts of the score for 6Dxy

representation (Table 5) shows that the postprocessing helps to improve ϵn as well as ϵi by
up to 1.89 deg. As the translation remains untouched by the postprocessing, the translation error
d does not change.
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7 Appendix B. Hyperparameter Optimization

For hyperparameter optimization, one fold was used, and individual hyperparameter optimiza-
tions were performed for the different rotation descriptions in the baseline network. The param-
eter space was sampled randomly. In Table 6, the search space for each hyperparameter evaluated
as well as the sampling value for the 6Dxy representation are listed. This method results in an
offset of typically 0.1 and maximum 0.4 score points.

8 Appendix C. Detailed Results

In this appendix, the detailed results of the evaluation of data ablation can be found. Table 7
summarizes the results of evaluation of data ablation in standard plane regression of calcaneus,
ankle, knee, and wrist body regions.

Table 5 Comparison of the errors directly obtained by the network (regressed)
and after postprocessing ensuring orthogonality of respective planes (postproc.)
using the 6Dxy rotation representation.

εn (deg) εi (deg) Score

Calcaneus

Regressed 8.77 ± 0.60 8.34 ± 0.44 8.92 ± 0.51

Postproc. 8.08 ± 0.38 8.09 ± 0.45 8.46 ± 0.63

Ankle

Regressed 7.11 ± 0.48 6.58 ± 0.29 6.70 ± 0.35

Postproc. 6.61 ± 0.34 6.37 ± 0.31 6.32 ± 0.25

Knee

Regressed 8.60 ± 0.98 8.45 ± 0.63 8.22 ± 0.71

Postproc. 6.71 ± 0.63 7.07 ± 0.95 6.80 ± 0.55

Wrist

Regressed 8.76 ± 1.19 8.84 ± 0.94 8.48 ± 1.09

Postproc. 7.74 ± 1.14 8.72 ± 0.64 7.85 ± 0.94

Note: Bold values represent the lowest values of error class for each body region.

Table 6 Search space hyperparameters, sampling distribution, and best configu-
ration for the plane regression task as result of random search hyperparameter
optimization.

Hyperparameter Sampling distribution Sampling value

Learning rate s ∼ log Uð0.0001; 0.01Þ 0.00164

Learning rate decay s ∼ log Uð0.2;0.9Þ 0.27291

Learning rate decay step s ∼ Uð20;80Þ 75

Momentum s ∼ log Uð0.5; 0.99Þ 0.957437

Batch size s ∼ Uð5;12Þ 9
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Table 7 Summarized results of evaluation of data ablation in standard plane regression of
calcaneus, ankle, knee, and wrist body regions.

d (mm) εn (deg) εi (deg) Score

Calcaneus

100% 9.94 ± 1.92 8.08 ± 0.38 8.09 ± 0.45 8.46 ± 0.63

80% 9.96 ± 1.43 9.16 ± 1.13 8.99 ± 0.67 9.29 ± 1.05

60% 11.20 ± 2.02 9.36 ± 1.19 9.22 ± 0.34 9.70 ± 0.75

40% 15.45 ± 7.49 10.95 ± 0.64 11.41 ± 1.27 11.94 ± 1.73

Ankle

100% 5.43 ± 0.25 6.61 ± 0.34 6.37 ± 0.31 6.32 ± 0.25

80% 5.44 ± 0.27 6.34 ± 0.45 6.36 ± 0.42 6.17 ± 0.34

60% 6.59 ± 0.33 7.11 ± 0.99 6.88 ± 0.48 6.96 ± 0.67

40% 7.72 ± 1.28 9.16 ± 1.61 9.79 ± 2.21 9.00 ± 1.59

Knee

100% 6.81 ± 0.47 6.71 ± 0.63 7.07 ± 0.95 6.80 ± 0.55

80% 7.24 ± 0.72 7.57 ± 0.77 7.55 ± 0.97 7.50 ± 0.73

60% 10.18 ± 2.27 8.89 ± 0.89 9.25 ± 0.73 9.22 ± 0.73

40% 10.13 ± 1.40 10.22 ± 1.21 10.30 ± 1.31 10.22 ± 1.25

Wrist

100% 7.27 ± 1.08 7.74 ± 1.14 8.72 ± 0.64 7.85 ± 0.94

80% 8.63 ± 1.75 8.88 ± 1.18 9.65 ± 0.83 8.98 ± 1.01

60% 8.29 ± 1.07 9.14 ± 0.73 10.49 ± 1.46 9.24 ± 0.81

40% 9.14 ± 1.04 11.98 ± 1.64 12.53 ± 1.31 11.52 ± 1.33
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