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Abstract. Diffuse optical tomography (DOT) has demonstrated huge potential in breast cancer diagnosis and
treatment monitoring. DOT image reconstruction guided by ultrasound (US) improves the diffused light locali-
zation and lesion reconstruction accuracy. However, DOT reconstruction depends on tumor geometry provided
by coregistered US. Experienced operators can manually measure these lesion parameters; however, training
and measurement time are needed. The wide clinical use of this technique depends on its robustness and faster
imaging reconstruction capability. This article introduces a semiautomated procedure that automatically extracts
lesion information from US images and incorporates it into the optical reconstruction. An adaptive threshold-
based image segmentation is used to obtain tumor boundaries. For some US images, posterior shadow can
extend to the chest wall and make the detection of deeper lesion boundary difficult. This problem can be solved
using a Hough transform. The proposed procedure was validated from data of 20 patients. Optical reconstruction
results using the proposed procedure were compared with those reconstructed using extracted tumor informa-
tion from an experienced user. Mean optical absorption obtained from manual measurement was
0.21� 0.06 cm−1 for malignant and 0.12� 0.06 cm−1 for benign cases, whereas for the proposed method it
was 0.24� 0.08 cm−1 and 0.12� 0.05 cm−1, respectively. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE)

[DOI: 10.1117/1.JBO.22.12.121610]

Keywords: ultrasound; tomography; digital image processing; tomographic image processing.

Paper 170293SSR received May 7, 2017; accepted for publication Dec. 4, 2017; published online Dec. 19, 2017.

1 Introduction
According to the American Cancer Society, about 246,660
breast cancer cases were diagnosed in 2016, which is the largest
population among all cancers. The estimated total death from
breast cancer was almost 40,450 for 2016.1 Early detection
of breast cancer could save lives and increase treatment options.
X-ray mammography is widely used for breast cancer screening;
however, it misses about 10% of the cancers, especially in
patients with dense breast.2 Ultrasound (US) is used as an
adjunct to mammography to differentiate solid from cystic
lesions; however, it does not always provide needed contrast
between benign and malignant solid lesions.3 MRI is frequently
used for screening high-risk patients, but its overall performance
is not satisfactory due to high false positive rates.2

Diffuse optical tomography (DOT) is a noninvasive tech-
nique that uses near-infrared (NIR) light to map tissue optical
properties. Because water absorption in the NIR spectrum is
low, the light can penetrate several centimeters inside soft tissue,
for example, breast and brain. Reflected or transmitted light
measured at the tissue surface is used to reconstruct tomographic
images.4,5 DOT has demonstrated huge potential in cancer
diagnosis and treatment monitoring by mapping hemoglobin
concentration that is related to vasculature content and tumor
angiogenesis. Using multiple wavelengths, it is possible to mea-
sure oxygenated, deoxygenated, and total hemoglobin concen-
trations. It also provides information regarding oxygen
saturation, lipid, and water concentration. These measurements

could be effectively used to diagnose cancers versus benign
lesions and monitor treatment response because malignant
tumors typically have higher hemoglobin content as compared
with benign lesions and the hemoglobin changes differ between
treatment responders and nonresponders.6–10

However, DOT suffers from intensive light scattering inside
the tissue, and scattering causes uncertainty in reconstructed
target location and inaccuracy of target quantification. These
problems can be largely overcome using other imaging tech-
niques to guide the DOT for localization and reconstruction.
US, mammography, andMRI-guided DOT10–12 have been inves-
tigated, and promising results have been reported. US-guided
DOT has been developed by our group, and its utility in cancer
diagnosis and treatment monitoring has been demonstrated from
several clinical studies.10,13,14

In the US-guided DOTapproach, coregistered US images are
captured and measurements of size and depth are then incorpo-
rated in DOT reconstruction as a region of interest (ROI). A
dual-zone mesh image reconstruction15 is used to segment the
ROI and background region with fine and coarse mesh sizes.
This scheme effectively reduces the total number of voxels
with unknown optical absorption for imaging reconstruction.
Additionally, a total absorption of each voxel is reconstructed,
and the total is then divided by the voxel size to provide absorp-
tion distributions. Because lesion absorption is higher than
background in general, the total absorption, which is the product
of voxel size and lesion absorption, of a smaller voxel is about
the same scale of total absorption as background in a larger
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voxel. Therefore, the inversion is better conditioned and
converges in fewer iterations compared with conventional
methods that do not use a dual-mesh approach. Thus, US
identified ROI is critical to guiding dual-zone mesh DOT
reconstruction.

Extraction of tumor size and location from US images has
been done manually, which requires experienced users to make
these measurements and slows down the DOT reconstruction.
Similar to other medical imaging techniques, automatic US
image segmentation is a challenging task because US image
contrast is low and boundaries are often not clear due to speckle.
Researchers have explored several methods to obtain a reliable
segmentation from medical images. These methods include
operator-assisted region growing techniques,16 rule-based seg-
mentation in which some known image primitives are used
for an unsupervised segmentation,17 atlas-based image segmen-
tation in which a known structure is searched in the image for
segmentation,18 and neural network and c-mean clustering,19

which generates statistical models to classify pixels into differ-
ent segments. In this article, we introduce a simple adaptive
threshold-based method20 that is fast on data processing and
easy for implementation; moreover, it also provides comparable
accuracy for DOT reconstruction as compared with manual
processing. This method utilizes an image histogram to obtain
an adaptive threshold for each input image. For some US
images, the posterior shadow of a tumor extends to the chest
wall and makes the segmentation difficult. To avoid this prob-
lem, Hough transform21-based line detection is used to deter-
mine the chest wall location and use it as the deep boundary
of the tumor.

Twenty patients (10 benign and 10 malignant cases) are used
to evaluate the performance of the segmentation method.
Reconstructed absorption images are compared with a manual
processing method, and similar results are obtained. To the best
of our knowledge, this is the first report of an automated seg-
mentation method using US image to guide DOT image
reconstruction. The method can be modified and implemented
into MRI or x-ray-guided DOT imaging reconstruction.

2 Methods

2.1 Patient Data and Experiments

Patient data were acquired from a US-guided DOT system.13

The study was approved by the local Institutional Review
Boards and was compliant with the Health Insurance
Portability and Accountability Act. All patients signed the
informed consent. Data used in this study have been deidenti-
fied. Based on biopsy results, 10 patients had benign lesions and
10 patients had cancers. Specific type and US measurements of
radius in z (depth) and x (spatial dimension) (cm) of tumor data
by an experience user are given in Table 1.

Our data acquisition system consists of a commercial US sys-
tem and an NIR imager. Briefly, the optical imager delivers light
of 740-, 780-, 808-, and 830-nm wavelengths to the tissue
sequentially. Light is modulated at 140-MHz carrier frequency.
Each wavelength is multiplexed to nine positions on a hand-held
probe, and 14 photomultiplier detectors detect reflected light
via light guides. The detected signals are demodulated to
20-kHz output. A custom-made analog-to-digital board is used
to collect all signals and stores the data in a laptop. Each data
set takes 3 to 4 s to acquire, which is fast enough to acquire
multiple sets of measurements from each patient at both lesion
and contralateral normal breasts for reference. Coregistered US
images are captured from the video output of the US system
before and after each NIR data set. The detailed system descrip-
tion and data acquisition procedure can be found in Refs. 13
and 22.

2.2 Extract Tumor Size and Location

To automatically detect lesion size and location for DOT
reconstruction, an adaptive threshold-based segmentation
method is used. For some cases, posterior shadow of the tumor
is extended to the chest wall in the US images. In those cases, it
is difficult to determine the tumor size because the deeper boun-
dary of the tumor cannot be accurately determined. Under these
circumstances, locations of the chest wall are determined and

Table 1 Type and size of 10 malignant and 10 benign tumors.

Malignant Benign

Tumor type Radius (z-axis, x -axis) Tumor type Radius (z-axis, x -axis)

Ductal carcinoma in situ (0.77, 0.89) Breast tissue with mild chronic inflammation (1.23, 1.67)

Invasive ductal carcinoma (2.24, 2.25) Cyst (1.62, 3.10)

Lobular carcinoma (1.60, 2.40) Fibroadenoma (1.56, 3.11)

Infiltrating ductal carcinoma (0.92, 1.27) Proliferative breast lesions (0.5, 0.57)

Invasive ductal carcinoma (0.93, 0.57) Cyst (0.36, 1.00)

Invasive ductal carcinoma (1.15, 1.57) Cyst (0.61, 0.83)

Invasive ductal carcinoma (0.55, 0.57) Fibrocystic change (0.77, 1.41)

Invasive ductal carcinoma (1.68, 2.00) Intraductal hyperplasia (0.31, 0.63)

Invasive ductal carcinoma (0.83, 0.82) Chronic inflammation (2.06, 2.69)

Invasive ductal carcinoma (0.78, 1.07) Papillary intraductal hyperplasia (0.46, 0.56)
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used as estimates of deeper boundary of the tumor. To determine
the chest wall, Hough transform is used together with an edge
detection method.

2.2.1 Preprocessing

A typical coregistered US image acquired by an image capture
card is given in Fig. 1(a). For reference, the vertical axis is
marked as z-axis and the horizontal axis is marked as x-axis.
Measurement in the y-axis is considered the same as the
x-axis, assuming that lesions are symmetric in the x- and y-axes.
Since the pixel intensity is the key information needed in the
segmentation algorithm, the US grayscale image is automati-
cally cropped first from the captured image before using
the Hough transform and Sobel23 edge detection method.
Figure 1(b) shows the cropped US image.

Depth marker detection is the next step before applying the
segmentation procedure because the markers vary with depth
range that depends on the user selection from the front panel
of the US machine. To determine the depth markers, a binary
image is generated using a fixed pixel intensity of 150 out of
256 grayscale levels as the threshold. Since the depth markers
are mainly white, this pixel intensity will help to separate them
from background. Then all of the white regions consisting of
3 to 50 pixels and located outside the right border of the US
image are marked as depth markers. These pixel ranges are
obtained by examining the available US images collected
from different manufacturers. This depth marker detection pro-
cedure detects horizontal ticks along with numbers that make it
suitable to use for images collected from a wide range of US
machines. Figure 2 shows the captured image with automati-
cally detected depth markers. When positions of those depth
markers are known, the difference between two markers in
the z-axis provides the number of pixels per centimeter, which
are then used to convert the measured tumor size in depth into
centimeter.

2.2.2 Adaptive threshold-based segmentation

To extract the required information from the US image, the first
step is to segment the lesion from the rest of the image. Then the
radius and center of the lesion can be measured from the seg-
mented lesion. A single threshold point is used to separate the
two zones, i.e., lesion and background. This threshold point is
determined adaptively for each input image. Because US images
have speckle noise, some complex segmentation techniques,
such as fuzzy c-mean clustering and active contour model,24

do not provide any improvement while demanding computation
resources due to complex processing. Moreover, DOT does not
require precise segmented information. Thus, instead of using a
complex segmentation algorithm, threshold-based segmentation
is used here to obtain tumor information.

Lesions in breast US images usually appear as hypoechoic
masses that separate them from the background tissue. To seg-
ment a hypoechoic mass, a threshold point is set to separate the

Fig. 1 (a) A typical US image captured in coregistration mode and (b) cropped US image.

Fig. 2 Depth markers detected on US image.
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tumor from the rest of the image. US images usually have very
low contrast. Histogram equalization is applied on the grayscale
image. Histogram equalization stretches the input histogram
over the available range, which is from 0 to 255 in grayscale,
and thus increases the contrast. Then a simple procedure is fol-
lowed to detect the threshold point adaptively. Since the inten-
sity varies significantly among different images, it is best to use
adaptive threshold point for every input image.

This adaptive threshold point detection procedure starts with
obtaining the histogram of the US image. Figure 3(a) shows the
histogram of an input image. The histogram shows a peak and a
hump with a notch between them as indicated in the figure. This
histogram shape is obtained from all US images after histogram
equalization because of the presence of a significant amount of
black (provides the peak) and gray pixels (the hump) in a US
image. This notch shows the threshold for separating gray

background from black tumor. To detect this point automati-
cally, the slope of the histogram is calculated. Pixel intensity
of the point when the sign of the slope has changed is considered
the threshold value. In the next step, this threshold value is used
to generate a binary image.

After obtaining the threshold for the US image, a binary
image is generated where tumor region is marked as black
and background is white. However, tumor is not the only
black zone in the binary image. To remove the unwanted
black regions, the user needs to insert a seed in the approximate
tumor location by clicking the tumor in the US image as shown
in Fig. 3(b). If there exist multiple tumors, then multiple seeds
are required to be inserted in the probable locations. Any region
that does not contain a seed is discarded. Finally, only the tumor
region survives. Then the MATLAB® function “regionprop” is
used to automatically measure the tumor center and radius. This

Fig. 3 (a) Histogram of a US image, threshold is marked with an arrow and (b) inserted seed on the
cropped image by user.

Fig. 4 Flow diagram of the tumor boundary detection procedures.

Fig. 5 (a) Breast US image with chest wall marked with arrows, (b) edge detected binary image from (a),
and (c) detected chest wall location on the original input image. The yellow and red stars indicate the
separation points between line pieces. Green lines indicate the detected linear structures after restriction
applying.
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information is then passed to the optical reconstruction code.
The flow diagram in Fig. 4 shows the steps for the entire
procedure.

2.2.3 Chest wall detection using Hough transform

Detection of chest wall depth is not essential to obtaining tumor
location and size. However, for some cases when the posterior
shadow extends to the bottom of the US image, it is difficult to

define the bottom of the tumor. In such cases, the chest wall
location is considered the bottom of the tumor. We defined
chest wall depth as the distance from the skin to the top
layer of chest wall muscle. An automated chest wall depth detec-
tion method was developed and applied to the coregistered US
images. Detection of the chest wall is based on the fact that chest
wall muscles appear as line structures in US images [see
Fig. 5(a)].25 Therefore, line detection algorithms could be
used for automatic detection. We chose Hough transform21 as

Fig. 6 Flow diagram of the chest wall detection method.

Fig. 7 (a) US image with manual markers to measure sizes of the tumor. Themeasurements were 3.1 cm
in spatial direction x and 1.6 cm in depth direction z using manual measurements. (b) Segmented US
image using the semiautomated procedure and the measurements were 3.3 cm in spatial x direction and
1.6 cm in depth direction.

Fig. 8 (a) US image with manual markers to measure sizes of the tumor. The measurements were
0.88 cm in spatial direction x and 0.77 cm in depth direction z using manual measurements.
(b) Segmented US image using the semiautomated procedure and the measurements were 0.9 cm
in spatial x direction and 0.73 cm in depth direction.
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a line detection method because it is simple and robust when
combined with any edge detection method. Here, the Canny
edge detection26 method is used as an edge detection method.
The binary image generated by the Canny edge detection is
shown in Fig. 5(b).

It is clear from Fig. 5(b) that, if Hough transform is applied to
the edge detected image without any restriction, it will detect
several unnecessary structures. For example, due to subcutane-
ous fat and breast tissue interfaces, some linear structures appear
at the top of the US image. There are other linear structures also
visible in the image. Hough transform detects all of these linear
structures. To avoid these unnecessary line structures, we mod-
eled the chest wall as a linear structure that is mainly horizontal
with a small slope and it should appear at the lower half of the
image. After applying Hough transform and the above-men-
tioned restrictions, the survived linear structures are marked
in green lines as shown in Fig. 5(c). Finally, the mean value
of all of the points of these detected lines is considered the
chest wall depth. A flow diagram of the entire procedure is
given in Fig. 6. More details on the chest wall detection method
and evaluation of this method can be found in Ref. 27.

Table 2 Comparison between manually and semiautomatically
extracted information from US images.

Manual
segmentation

(cm)

Proposed
segmentation

(cm)

Deviation =
manual —
proposed

(cm)

Benign
cases

z center
position

1.49 1.56 −0.07l

x center
position

0.14 0.19 −0.02

z-radius 0.95 0.97 −0.1

x -radius 1.55 1.65 −0.05

Malignant
cases

z center
position

1.9 1.98 −0.07

x center
position

0.13 0.15 −0.03

z-radius 1.15 0.99 −0.06

x -radius 1.34 1.4 −0.03

Table 3 Evaluation of the repeatability of the proposed method.

Depth (cm) z-radius (cm) x -radius (cm) x center (cm) Total hemoglobin (μM)

Benign cases

1.86� 0.042 1.48� 0.074 2.02� 0.233 0.47� 0.048 23.66� 0.905

1.78� 0.001 1.57� 0.006 3.45� 0.189 0.3� 0.014 62.81� 0.384

1.69� 0.013 1.44� 0.079 3.07� 0.118 0.45� 0.124 50.25� 4.452

2� 0.006 0.4� 0.006 0.53� 0.006 0.58� 0.143 62.69� 0.362

1.08� 0.003 0.39� 0.019 1.03� 0.070 −0� 0.026 42.33� 0.001

1.18� 0.006 0.56� 0.009 1.12� 0.166 0.09� 0.051 28.26� 0.022

1.61� 0.036 0.75� 0.024 1.61� 0.046 −0.1� 0.297 67.15� 0.018

1.16� 0.009 0.24� 0.009 0.49� 0.024 0.15� 0.116 123.58� 0.317

1.8� 0.040 2.52� 0.083 3.46� 0.114 −0.01� 0.079 64.11� 0.002

1.32� 0.020 0.26� 0.004 0.48� 0.042 0� 0.013 83.98� 0.002

Malignant cases

1.35� 0.019 0.72� 0.012 0.93� 0.027 0.21� 0.117 109.78� 0.129

2.55� 0.031 1.92� 0.029 2.84� 0.065 0.16� 0.077 172.66� 0.000

2.97� 0.018 1.45� 0.036 2.34� 0.016 −0.63� 0.243 198.14� 1.734

1.66� 0.008 0.88� 0.009 1.07� 0.031 0.48� 0.106 93.36� 2.061

2.03� 0.029 0.65� 0.078 0.43� 0.009 −0.49� 0.035 95.73� 0.038

1.45� 0.027 1.09� 0.009 1.45� 0.024 0.52� 0.079 107.23� 1.375

2.59� 0.001 0.3� 0.030 0.55� 0.014 0.19� 0.028 135.49� 0.060

1.94� 0.073 1.34� 0.137 2.76� 0.219 0.53� 0.082 77.77� 0.556

1.79� 0.014 0.77� 0.026 0.81� 0.037 0.46� 0.099 156.49� 0.992

1.57� 0.016 0.65� 0.000 0.97� 0.015 0.24� 0.010 88.84� 0.001
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3 Optical Reconstruction
The absorption map of each wavelength was reconstructed using
the dual-mesh approach with lesion parameters obtained from
coregistered US. Because the spatial resolution of diffused
light is poorer than that of US, the ROI is chosen to be at
least two to three times larger than that seen using US in the x −
y dimensions. In addition, because the depth localization of dif-
fused light is very poor, a tighter ROI in the depth dimension is
set using coregistered US. The weight matrix was computed
using fitted optical properties of each patient’s normal contra-
lateral breast. The scattered field Usd measured from the lesion
area was related to the internal total absorption coefficients
∫Δμa ≈ voxel size × Δμa using the following equation:

EQ-TARGET;temp:intralink-;sec3;63;605½Usd�M×1 ¼ ½W�M×N

�Z
Δμa

�
N×1

;

where M ¼ s × d is the total number of source–detector pairs
and W is the weight matrix related to the sensitivity of voxels

inside the medium. The number of amplitude and phase mea-
surements is 252 (2 ×M) for 9 sources and 14 detectors.
However, the number of voxels varies from ∼300 to ∼1000
based on the size of the tumor. To obtain the unknown absorption
information, the conjugate gradient method was used to solve
the inverse problem formulated as minimize kUsd −W∫Δμak2,
where k:k is the Euclidean norm. Since this is an ill-posed prob-
lem mainly due to the correlated diffused scattering field, the
dual-mesh technique utilizes the tumor location and size informa-
tion extracted from coregistered US images for reconstruction.15

After applying the dual-mesh technique to minimize the number
of unknowns, reconstruction speed improves and convergence is
reached in ∼3 to 4 iterations.

4 Results
The proposed US segmentation method is evaluated in two
steps. First, the US segmented reconstruction results are
obtained and deviation is calculated against manually seg-
mented reconstruction results. Second, both automated and

Fig. 9 Optical absorption maps of four wavelengths using three times of the size measured by US in
x -dimension. Depth used in optical reconstruction is the same as USmeasurement. Each optical absorp-
tion map has seven image slides of 0.5 cm from the skin surface to the chest wall with 0.5 cm step in
depth. Manually measured tumor information from Fig. 7(a) is used in these maps.
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manually segmented results are used to generate absorption
maps and the corresponding hemoglobin concentration maps
and are compared.

4.1 Validation of Ultrasound Segmentation

To evaluate the performance of the US segmentation algorithm,
the tumor boundary for all 20 cases was delineated by an expe-
rienced US imager. These readings are taken as standard in this
study. Then the experimental results were compared with those
manual measurements.

Two input images with manually marked tumor boundaries
are presented in Figs. 7(a) and 8(a). In Figs. 7(b) and 8(b), seg-
mented images using the proposed method are presented. It is
clear from these figures that the segmented tumor by the pro-
posed algorithm is comparable to the manual measurement.
To obtain a quantitative evaluation of the US segmentation pro-
cedure, US images from 10 benign and 10 malignant cases are
collected. Then center coordinates of the tumor and radius in
both axes are measured manually. The same information is

also collected from the proposed segmentation method. Then
deviation is calculated between the two methods for 20 images.
Comparison of the average measurements from these 20 images
is given in Table 2. From the table, we found that manual mea-
surements are slightly smaller than the proposed measurements.
However, deviation from different measurements never exceeds
0.25 cm, which is the resolution of the optical reconstruction,
so optical reconstruction will not be affected by this small
deviation.

To evaluate the repeatability of the proposed US segmenta-
tion algorithm, we measured four parameters (lesion depth,
z-radius, x-radius, and x-center) from three different sets of
US images and reconstructed the corresponding total hemoglo-
bin maps. For each case, these images were collected from the
same lesion location; however, some deviation was expected
because the operator intended to hold the probe still for each
data set and may move a little between different data sets to
obtain the best US images. For each case, mean and standard
deviation are given in Table 3. This deviation for depth is
<1.5 mm and for the other three spatial measurements is smaller

Fig. 10 Optical absorption maps using three times of the size identified by US in x -dimension. Depth
used in optical reconstruction is the same as US measurement. Tumor information for these maps was
extracted from Fig. 7(b).
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than 0.25 cm (image grid size) and thus does not have any major
effect on optical reconstruction. As shown in the table, the maxi-
mum deviation obtained from benign cases is 4.45 μM and for
malignant case is 2.06 μM.

4.2 Validation of Optical Reconstruction

The ultimate goal of the US segmentation algorithm is to assist
DOT reconstruction. In this section, performance of optical
reconstruction is evaluated using tumor information extracted
from both manual and proposed segmentation processes.
Optical data of the same 20 patients were used to generate
absorption maps for four different wavelengths. Then the
absorption information is used to obtain hemoglobin concentra-
tion. Both manual and semiautomatic features are used to gen-
erate different absorption maps. In Figs. 9 and 10, absorption
maps for a benign case are compared, and a malignant case
is presented in Figs. 11 and 12. It is clear from these figures
that the reconstructed map is almost similar. The average maxi-
mum absorption from 20 cases is compared in Table 4. From
the table, we can see that the mean optical absorption obtained
from manual measurement was 0.21� 0.06 cm−1 for malignant

and 0.12� 0.06 cm−1 for benign cases, where for the pro-
posed method it was 0.24� 0.08 cm−1 for malignant and
0.12� 0.055 cm−1 for benign tumors.

Finally, Fig. 13 shows boxplots for oxygenated, deoxygen-
ated, and total hemoglobin concentrations for the same 20 cases
for both manual and proposed automated procedures. We can
see from this figure that results for both techniques are almost
similar. For benign cases, mean total hemoglobin concentration
for all 10 cases is 58.95� 27.76 μM from manual segmentation
and 58.64� 27.93 μM for the proposed automated segmenta-
tion. For malignant cases, this measurement is 115.23�
39.62 μM from manual segmentation and 114.64� 49.66 μM
for the automated segmentation. Values for oxygenated hemo-
globin for benign cases is 35.73� 20.67 μM for manual seg-
mentation method and 38.32� 21.67 μM for proposed
segmentation method. For malignant cases, this measurement
is 72.30� 23.07 μM and 75.27� 27.92 μM for manual and
proposed segmentation methods, respectively. Deoxygenated
hemoglobin concentration is 35.41� 15.31 μM and 37.13�
16.21 μM for benign cases using manual and proposed segmen-
tation methods, respectively. For malignant cases, this measure-
ment increases to 50.26� 19.63 μM and 48.04� 22.88 μM for

Fig. 11 Optical absorption maps of four wavelengths using three times of US measured size in x and
same size as US measurement in z. Tumor dimension and location were extracted from Fig. 8(a) to
generate these maps.
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manual and proposed segmentation methods, respectively. Thus,
the performance of the proposed feature extraction technique is
quite acceptable.

5 Discussion and Summary
In this work, a simple and effective US segmentation algorithm
designed for assisting DOT image reconstruction is presented.
This algorithm extracts tumor size and location from breast US
images with minimum user interaction. It provides sufficiently
accurate ROI for the DOT reconstruction; at the same time, it is
very easy to implement and does not require much computa-
tional resources, thus making it ideal for real-time DOT
reconstruction. Along with the threshold-based segmentation,
Hough transform-based line detection is combined in the algo-
rithm to detect chest wall location. Chest wall location is only
needed when the tumor acoustic attenuation shadows the deeper
boundary of the tumor.

However, this algorithm will not be able to extract informa-
tion from some noisy US images when the contrast between
tumor and background is very low. This work also requires lim-
ited input from users; thus, it is not fully automated. In the

Fig. 12 Optical absorption maps using three times of US measured size in x and same size as US
measurement in z. To generate these maps, tumor information was extracted from Fig. 8(b).

Table 4 Average absorption coefficient using manual and automati-
cally segmented tumor information.

Malignant Benign Ratio

Average (standard deviation) of maximum reconstructed
absorption with manual tumor segmentation (cm−1)

740 nm 0.19 (0.08) 0.11 (0.06) 1.72

780 nm 0.22 (0.07) 0.12 (0.06) 1.83

808 nm 0.22 (0.05) 0.14 (0.08) 1.57

830 nm 0.22 (0.05) 0.13 (0.05) 1.69

Average (standard deviation) of maximum reconstructed
absorption with proposed tumor segmentation (cm−1)

740 nm 0.21 (0.08) 0.14 (0.05) 1.5

780 nm 0.25 (0.09) 0.12 (0.05) 2.08

808 nm 0.24 (0.08) 0.12 (0.06) 2

830 nm 0.24 (0.08) 0.12 (0.06) 2
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future, it will move toward automatic segmentation by applying
a search algorithm based on the local mean28 or similar seed
generation method.

In conclusion, this work is one-step closer toward real-time
DOT reconstruction. It eliminates the requirement for training an
experienced user to provide the tumor location and size from the
US images. It provides the required tumor information for the
dual-mesh reconstruction with necessary accuracy. Another
important feature of this proposed algorithm is that it only
utilized the pixel intensities and, thus, is applicable as a segmen-
tation approach for other imaging modalities, such as MRI-
guided DOT and x-ray-guided DOT.
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