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ABSTRACT 

High-precision image-guided neurosurgery – especially in the presence of brain shift – would benefit from 

intraoperative image quality beyond the conventional contrast-resolution limits of cone-beam CT (CBCT) for visualization 

of the brain parenchyma, ventricles, and intracranial hemorrhage. Deep neural networks for 3D image reconstruction offer 

a promising basis for noise and artifact reduction, but generalizability can be challenged in scenarios involving features 

previously unseen in training data. 

We propose a 3D deep learning reconstruction framework (termed “DL-Recon”) that integrates learning-based image 

synthesis with physics-based reconstruction to leverage strengths of each. A 3D conditional GAN was developed to 

generate synthesized CT from CBCT images. Uncertainty in the synthesis image was estimated in a spatially varying, 

voxel-wise manner via Monte-Carlo dropout and was shown to correlate with abnormalities or pathology not present in 

training data. The DL-Recon approach improves the fidelity of the resulting image by combining the synthesized image 

(“DL-Synthesis”) with physics-based reconstruction (filtered back-projection (FBP) or other approaches) in a manner 

weighted by uncertainty – i.e., drawing more from the physics-based method in regions where model uncertainty is high.  

The performance of image synthesis, uncertainty estimation, and DL-Recon was investigated for the first time in real 

CBCT images of the brain. Variable input to the synthesis network was tested – including uncorrected FBP and 

precorrection with a simple (constant) scatter estimate – hypothesizing the latter to improve synthesis performance. The 

resulting uncertainty estimation was evaluated for the first time in real anatomical features not included in training 

(abnormalities and brain shift). The performance of DL-Recon was evaluated in terms of image uniformity, noise, and 

soft-tissue contrast-to-noise ratio in comparison to DL-Synthesis and FBP with a comprehensive artifact correction 

framework. DL-Recon was found to leverage the strengths of the learning-based and physics-based reconstruction 

approaches, providing a high degree of image uniformity similar to DL-Synthesis while accurately preserving soft-tissue 

contrast as in artifact-corrected FBP. 
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1. INTRODUCTION 
Neurosurgical approaches to cancer, trauma, or neuro-degenerative disease require a high degree of geometric 

precision to safely avoid vessels and eloquent brain and achieve effective treatment. The state of the art in intraoperative 

cone-beam CT (CBCT) is sufficient for visualization and registration of high-contrast objects (e.g., bone, surgical 

instruments), but it does not provide contrast resolution suitable to soft-tissue, brain parenchyma, or intracranial 

hemorrhage. Factors limiting CBCT image quality include image biases (e.g., scatter, beam hardening) and quantum and 

electronic noise. 

Existing methods for improving CBCT image quality include artifact corrections1 and model-based iterative 

reconstruction (MBIR)2 that leverages physical knowledge of the imaging chain and image formation process. Recent 

developments in deep learning approaches provide another means of mitigating artifacts and reducing noise, including 

image synthesis from CBCT to approximate diagnostic-quality CT.3 Such approaches offer improvements in 

computational runtime compared to MBIR, but the performance of image synthesis is subject to uncertainties arising from 

features not present in training (e.g., pathology, anatomical variations, and unmodeled imaging conditions). The fidelity 

of the synthesized image hence cannot be guaranteed.4 
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Recognizing the potential pitfalls in generalizability of image synthesis to highly variable anatomical structures in 

image-guided surgery, we propose a deep learning reconstruction framework (referred to as “DL-Recon”) that integrates 

image synthesis with physics-based reconstruction mediated by model uncertainty. Previous work5 proposed a 2D U-Net 

for image synthesis and combined the result with FBP and MBIR reconstruction via model uncertainty in simulation 

studies. In this work, we developed a 3D generative adversarial network (GAN) for image synthesis and evaluated the 

performance of DL-Recon for the first time in real CBCT images, including anatomical abnormalities unseen in training 

data. 

2. METHODS 

A. Image synthesis and uncertainty estimation 

A 3D conditional GAN was developed for CBCT-to-CT image synthesis. For training (Section II.C), a high-fidelity, 

physics-based forward projection framework (including an accurate beam model, absorption / scatter characteristics, and 

model of the imaging chain) was used to generate simulated CBCT images from corresponding CT images. Two alternative 

inputs to the synthesis network were investigated: (i) an uncorrected FBP (𝜇
𝑢𝑛𝑐𝑜𝑟𝑟
𝐶𝐵𝐶𝑇 ), and (ii) a precorrected FBP (𝜇

𝑝𝑟𝑒𝑐𝑜𝑟𝑟
𝐶𝐵𝐶𝑇 ) 

for which a simple (constant) scatter correction was applied, hypothesizing that the precorrection to improve synthesis 

performance. 

As illustrated in Fig. 1, a 3D GAN was implemented with a U-Net with a residual block at each level of the encoding 

/ decoding path as the generator, and a convolutional pixel-wise classifier6 as the discriminator. The objective function 

combined GAN and L1 loss as follows: 

 𝐺̂ = argmin
𝐺

max
𝐷

ℒ𝑐𝐺𝐴𝑁(𝐺, 𝐷) + 𝜆ℒ𝐿1(𝐺) (1) 

where 

 ℒ𝑐𝐺𝐴𝑁(𝐺, 𝐷) = 𝔼[log 𝐷(𝜇𝐶𝐵𝐶𝑇, 𝜇𝐶𝑇)] + 𝔼 [log (1 − 𝐷(𝜇𝐶𝐵𝐶𝑇, 𝐺(𝜇𝐶𝐵𝐶𝑇)))] (2) 

 ℒ𝐿1(𝐺) = 𝔼[‖𝜇𝐶𝑇 − 𝐺(𝜇𝐶𝐵𝐶𝑇)‖1] (3) 

𝐺 and 𝐷 denote the generator and discriminator, and 𝜇𝐶𝑇 and 𝜇𝐶𝐵𝐶𝑇 represent paired CT and CBCT images. The L1 loss 

helps avoid over smoothing, and the balance between the GAN and L1 loss is controlled by 𝜆.  

 

 

Figure 1. Network architecture of the generator for 3D image synthesis using a conditional  GAN. Model uncertainty (𝜎) 

in the synthesis is computed via Monte-Carlo dropout layers. 

 

As described in Gal and Ghahramani,7 dropout applied during network training is equivalent to a Bayesian 

approximation of the Gaussian process, and uncertainty in the model output can be estimated by computing the voxel-wise 

variance of multiple forward passes. Following such an approach, we added dropout layers (dropout rate = 0.2) prior to 

Proc. of SPIE Vol. 12304  1230408-2



the skip connection in each encoder and decoder block and to the final output. Both training and inference were performed 

with dropout. The predictive mean computed from a collection of 8 network outputs yields the synthesized image (DL-

Synthesis,  𝜇𝑆𝑦𝑛), and the predictive variance (𝜎2) serves as a proxy for model uncertainty. 

 

B. The DL-Recon framework 

The proposed method (termed DL-Recon) integrates 3D image synthesis with physics-based reconstruction via 

uncertainty associated with the synthesis model. The method involves three steps: (i) generation of a 3D synthetic CT 

image (𝜇𝑆𝑦𝑛) from a CBCT volume with estimation of model uncertainty (𝜎) as described above; (ii) physics-based 3D 

image reconstruction of projection data, including artifact corrections – for example, the pipeline described in [1] – to 

yield an artifact-corrected CBCT image (denoted 𝜇𝑐𝑜𝑟𝑟
𝐶𝐵𝐶𝑇); and (iii) voxel-wise combination of 𝜇𝑆𝑦𝑛 and 𝜇𝑐𝑜𝑟𝑟

𝐶𝐵𝐶𝑇 weighted 

by the estimated uncertainty to yield the DL-Recon image (denoted 𝜇𝐷𝐿−𝑅𝑒𝑐𝑜𝑛). The resulting image is: 

 𝜇𝐷𝐿−𝑅𝑒𝑐𝑜𝑛 = [1 − 𝛽(𝜎)]𝜇𝑆𝑦𝑛 + 𝛽(𝜎)𝜇
𝑐𝑜𝑟𝑟
𝐶𝐵𝐶𝑇 (4) 

where uncertainty is contained within a spatially varying map (𝛽, with values in the range [0, 1]) related by a sigmoid 

function: 

 𝛽(𝜎) =
1

1 + 𝑒−(𝑐1⋅𝜎+𝑐2)
 (5) 

where 𝑐1 and 𝑐2 specify the range and level, respectively, of the sigmoid, and 𝛽 controls the contribution of 𝜇𝑆𝑦𝑛 and 

𝜇𝑐𝑜𝑟𝑟
𝐶𝐵𝐶𝑇  in a voxel-wise manner. When predictive uncertainty is high, the 𝛽  map draws more from the physics-based 

reconstruction. 

The underlying premise in this approach is that the synthesis image (𝜇𝑆𝑦𝑛) carries particular benefits (e.g., uniformity 

and noise reduction) but may be subject to systematic error – for example, in structures unseen in the training data. The 

uncertainty map [𝜎(𝑥, 𝑦, 𝑧), alternatively 𝛽(𝑥, 𝑦, 𝑧)] were shown previously in simulation studies [5] to correlate with 

deviations from ground truth. The “uncertainty map” therefore offers insight on where the synthesis image may be subject 

to error and where it is advantageous to draw more from the physics-based 3D image reconstruction (𝜇𝑐𝑜𝑟𝑟
𝐶𝐵𝐶𝑇). 

Note that the physics-based method incorporated in DL-Recon could be FBP or any particular form of MBIR, 

recognizing that the latter may invite disadvantages of computational load associated with conventional iterative 

optimization. Alternatively, the synthesis image could be incorporated as a prior within a penalized optimization, as in [5]. 

In any of these scenarios, the voxel-wise weighting of synthesis and physics-based image reconstructions is intended to 

leverage the strengths of each, mediated by the model uncertainty. In the work reported below, DL-Recon incorporates 

(artifact-corrected) FBP reconstruction as a practical implementation that may be compatible with the rapid runtime 

requirements of image-guided surgery, focusing here on intracranial neurosurgery. 

 

C. Training data generation 

To obtain a large training dataset of matched CT and CBCT images, CBCT 

projection data were simulated from 35 real, helical CT volumes of 35 healthy 

subjects using a high-fidelity forward projector [5]. CBCT system geometry and 

image acquisition were simulated to match data (~745 views over 360°) acquired 

from the O-arm (the O-armTM “O2” imaging system, Medtronic) using nominal 

head scan protocols (100–120 kV and 75–240 mAs). Volumes were 

reconstructed with isotropic 0.7 mm voxels via FBP without artifact correction. 

Signal normalization linearly transformed the CBCT intensity histogram within 

the brain parenchyma to [-1, 1]. Volumetric patches (64×64×64 voxels) were 

stochastically sampled from the brain volume and fed to the network, and a total 

of 875 patches were used for training. The Adam optimizer (learning rate = 510-

5, 𝛽1 = 0.5, 𝛽2 = 0.999, L1 regularization 𝜆=100, and batch size = 2) was used 

and early stopping at 800 epochs was applied. 

 

D. Experimental studies 

D.1. Image synthesis of simulated and real brain CBCT images 

The proposed image synthesis method was validated on both simulated and real CBCT data. Simulated CBCT 

projections of 5 test CT volumes were generated and reconstructed in the same manner as the training set. Intensity 

Figure 2. Experimental setup for 

cadaver studies using the O-arm.  
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differences between synthesized images and ground truth were measured within the brain region for each volume. 

Experiments were conducted using the O-arm™ system illustrated in Fig. 2. Real projection data for 3 cadaveric heads 

(denoted below as cadaver #1-3) were collected at 120 kV and 150 mAs. Volumetric images were reconstructed on a grid 

of 320×320×280 voxels with isotropic 0.7 mm voxels. The runtime of DL-Synthesis was ~1 min per prediction (NVIDIA 

TITAN Xp). DL-Synthesis images were evaluated with uncorrected CBCT as input (denoted 𝜇
𝑢𝑛𝑐𝑜𝑟𝑟
𝑆𝑦𝑛 ) and with a basic 

(constant-scatter) precorrection (denoted 𝜇
𝑝𝑟𝑒𝑐𝑜𝑟𝑟
𝑆𝑦𝑛 ). Method performance was quantified in terms of image non-uniformity 

(NU), the difference in mean voxel value between region of interests (ROIs) in the parenchyma near the dural surface / 

sphenoid bone and about the lateral ventricles. 

D.2 Uncertainty estimation in real anatomical abnormalities 

Previous work [5] has shown correlation between synthesis error and uncertainty for simulated lesions (not exist in 

the training cohort) of difference location, size, and contrast. In this work, the accuracy of uncertainty estimation was 

evaluated in cadaver images, including specimens exhibiting true abnormalities that were not present in the training data. 

Specifically, abnormalities included a large intraparenchymal calcification, a loss of cerebrospinal fluid, and brain shift in 

which the brain cortex collapsed from the interior surface of the cranium. 

D.3 Cadaver studies on an intraoperative CBCT system 

Imaging performance was evaluated in terms of visual image quality as well as image uniformity, noise, and soft-tissue 

contrast-to-noise ratio (CNR) in cadavers imaged on the O-arm™ system (Fig. 2). FBP reconstructions were evaluated 

with and without artifact correction. DL-Recon was evaluated in comparison to FBP and DL-Synthesis, and uncertainty 

maps were displayed to understand how physics-based and deep learning-based approaches contributed to the final result.  

3. RESULTS 

A. Performance of image synthesis 

Fig. 3 shows results of image synthesis on simulated data 

(high-fidelity CBCT projections generated from CT). DL-

Synthesis demonstrated good overall correspondence with the 

ground truth CT, yielding high image uniformity and reduced 

noise compared to the uncorrected FBP image. In 5 test volume 

images, DL-Synthesis exhibited a difference in overall mean 

intensity (in the brain) of less than 1 HU (compared to > 12 HU 

for FBP) to the ground truth, with residual differences owing 

mainly to image noise. The estimated uncertainty highlights 

regions with anatomical variations such as the lateral ventricles 

and sulci in the cerebral cortex, which is susceptible to error (e.g., 

contrast loss) in the synthesis mage.  

Fig. 4 illustrates the performance of image synthesis on real 

data, in which the input to the synthesis network was either 

uncorrected or precorrected image data. DL-Synthesis acting on 

uncorrected FBP input exhibits performance degradation in 

regions affected by severe artifacts, yielding a higher degree of 

non-uniformity near the sphenoid bone (yellow arrow). A simple 

(constant) scatter correction was shown to partially account for 

biases that were not modeled by the forward projector (e.g., 

variation in bone density) and improve the overall image 

uniformity (2–4 HU). As a result, precorrected FBP yielded more 

accurate synthesis, reducing image NU by ~50% compared to 

synthesis acting on uncorrected FBP. However, DL-Synthesis 

exhibited a loss in contrast in structures such as the lateral 

ventricles (cadaver #1, magenta arrows), demonstrating potential 

pitfalls in the generalizability of image synthesis to real and 

highly variable image data.  

 

Figure 3. Synthesis performance in simulated 

CBCT data. (a) Sagittal slice of a test CT image 

volume. (b) Corresponding CBCT reconstruction 

(network input). (c) Resulting synthesized image. 

(d) Violin plot quantifying the respective 

difference in voxel values of uncorrected FBP and 

DL-Synthesis to the ground truth measured for 5 

test data. (e) Sagittal and (f) axial slice of the 

estimated uncertainty. 
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B. Uncertainty estimation in cadaver studies 

Fig. 5 demonstrates the performance of uncertainty estimation on real data with unseen features (calcium deposit in 

cadaver #2 and brain shift in cadaver #3). For both cases, the uncertainty map highlights the location of the unseen structure 

as well as at the lateral ventricles, suggesting a lack of reliability in the synthesis result and the need for input from physics-

based reconstruction.  

 

C. Performance of DL-Recon 

Fig. 6 shows reconstructed images from conventional methods (FBP and DL-Synthesis) and the proposed DL-Recon 

framework. As shown in Fig. 6(b), the comprehensive artifact correction pipeline reduced NU by 59%, but led to 38% 

increase in image noise. DL-Synthesis yielded the lowest NU value and noise but suffered from loss in soft-tissue contrast. 

In comparison, DL-Recon was able to reduce both NU and noise while preserving image contrast of the ventricles, 

providing ~15% increase in soft-tissue CNR compared to fully corrected FBP. 

The intensity profile of a curve across the brain [yellow dashed curve shown in Fig. 6(b)] was plotted in Fig. 7 for 

fully corrected FBP, DL-Synthesis, and DL-Recon. Fully corrected FBP exhibited residual nonuniformity, especially just 

inside the cranium due to residual beam-hardening effects, as indicated by the nonuniform intensity profile between the 

ventricle and cranium. DL-Synthesis improved uniformity in these regions but reduced the contrast in the ventricle, similar 

to the effects shown above in relation to model uncertainty. By comparison, DL-Recon maintained the benefits of image 

uniformity from DL-Synthesis while achieving contrast in the ventricles similar to the fully corrected FBP. 

 

Figure 4. Synthesis performance for (a) uncorrected and (b) precorrected FBP of real CBCT images. (c) Boxplot 

quantifying image non-uniformity in synthesized images of 3 cadavers. 

 

Figure 5. Uncertainty estimation in cadaver CBCT head images. Precorrected FBP and the estimated uncertainty (𝛽 

map) within the brain parenchyma for (a-b) cadaver #1 with calcium deposit and (c-d) cadaver #3 with brain shift.  
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Figure 6. Example axial and sagittal slices of FBP, DL synthesis, and DL-Recon in cadaver CBCT data. Measurements 

of image non-uniformity (NU), noise, and contrast-to-noise ratio (CNR) of the lateral ventricles are listed below each 

image. Difference images show the contributions of the physics-based [(d)-(a)] and image synthesis [(d)-(c)] methods 

to the DL-Recon image (approximate Hounsfield Units). 

  

Figure 7. Intensity profiles of FBP, DL-Synthesis, and 

DL-Recon. The DL-Recon image leverages the 

improved uniformity of DL-Synthesis (region just 

inside the cranium) and the improved (accurate) 

contrast of fully corrected FBP (in the ventricles). 
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