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Abstract

Purpose: Validation of artificial intelligence (AI) algorithms in digital pathology with a refer-
ence standard is necessary before widespread clinical use, but few examples focus on creating
a reference standard based on pathologist annotations. This work assesses the results of a pilot
study that collects density estimates of stromal tumor-infiltrating lymphocytes (sTILs) in breast
cancer biopsy specimens. This work will inform the creation of a validation dataset for the
evaluation of AI algorithms fit for a regulatory purpose.
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Approach: Collaborators and crowdsourced pathologists contributed glass slides, digital
images, and annotations. Here, “annotations” refer to any marks, segmentations, measurements,
or labels a pathologist adds to a report, image, region of interest (ROI), or biological feature.
Pathologists estimated sTILs density in 640 ROIs from hematoxylin and eosin stained slides of
64 patients via two modalities: an optical light microscope and two digital image viewing
platforms.

Results: The pilot study generated 7373 sTILs density estimates from 29 pathologists. Analysis
of annotations found the variability of density estimates per ROI increases with the mean; the
root mean square differences were 4.46, 14.25, and 26.25 as the mean density ranged from 0% to
10%, 11% to 40%, and 41% to 100%, respectively. The pilot study informs three areas of
improvement for future work: technical workflows, annotation platforms, and agreement analy-
sis methods. Upgrades to the workflows and platforms will improve operability and increase
annotation speed and consistency.

Conclusions: Exploratory data analysis demonstrates the need to develop new statistical
approaches for agreement. The pilot study dataset and analysis methods are publicly available
to allow community feedback. The development and results of the validation dataset will be
publicly available to serve as an instructive tool that can be replicated by developers and
researchers.
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1 Introduction

Recent advancements in the fields of digital pathology and artificial intelligence and machine
learning (AI/ML) have the potential to transform the field of pathology by increasing the speed
and accuracy of diagnosis.1–5 However, before implementing novel AI/ML algorithms for clini-
cal use, their performance must be validated against a reference standard (ground truth) to assess
their accuracy.6 In cases where an appropriate independent reference standard is not available,
the reference standard may be established by human experts. Using human experts as a reference
standard occurs in fields that rely on the interpretation of multi-factored visual information,
like pathology.5,7

Using pathologist annotations as a reference standard is susceptible to interobserver
variability.8–10 Here, as is often done in pathology, we use “annotations” to refer to any marks,
segmentations, measurements, or labels a pathologist adds to a report, image, region of interest
(ROI), or biological feature/target. Potential sources of variability in pathologist annotations
include preanalytic and analytic variables. Preanalytic sources may include variability from
tissue acquisition, tissue processing, tissue section thickness, tissue staining, slide digitization,
and viewing digital displays.11–13 Analytic variability may result from differences in knowledge,
residency training, subspecialty expertise, and experience as a practicing pathologist.7,14 This
variability is compounded in validation studies when these differences are not standardized or
captured in the data-collection process, which is further complicated by variable numbers of
annotating pathologists between studies.15 Moreover, there is a lack of consensus agreement
on the statistical methods for calculating interpathologist variability, which makes determining
whether an AI/ML algorithm meets the acceptance criteria of performance difficult to ascertain.
Therefore, there is a need to establish standardized workflows for efficiently collecting and using
pathologist annotations and to construct the statistical methods needed to establish agreement
between pathologists.
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One example of where AI/ML algorithms may improve pathologist evaluation is in the esti-
mation of the density of stromal tumor-infiltrating lymphocytes (sTILs) in triple-negative breast
cancer (TNBC). sTILs density is estimated by pathologist assessment of hematoxylin and eosin
(H&E) stained tumor-associated stromal tissue.16–18 In TNBC, the density of sTILs is a quanti-
tative, prognostic, and predictive biomarker.19–22 High levels of sTILs density correlate with
improved survival without and with therapy and predict positive response to therapy.19,23–25

Additional evidence indicates that the density of sTILs is a viable biomarker for other tumor
types, such as nonsmall cell lung cancer, colorectal cancer, and prostate cancer.17,26–29 Yet,
density evaluations of sTILs by pathologists are difficult and have notable variability, which
makes developing a validation dataset for AI/ML algorithms for sTILs density estimation
difficult.26,30–32 While flow cytometry, immunohistochemistry evaluation, and quantitative multi-
plex immunofluorescence also characterize sTILs in tissue, these approaches can be complex,
time-consuming, expensive, and consume large quantities of tissue compared with estimating
sTILs density in H&E slides during routine diagnostic examination.29,33,34 Therefore, a valida-
tion dataset using pathologist annotations on H&E slides will be accessible to the largest number
of users. One method to develop such a validation dataset is to collect annotations from multiple
pathologists on multiple cases to understand and improve the reference standard.

To maximize the efficiency of the annotation process, we proposed a standardized workflow
and methodology to create a validation dataset of pathologist-annotated sTILs density estimates
in H&E stained breast cancer biopsy slides.35 We launched a pilot study in February 2020 and
collected pathologist annotations on an optical microscope platform and two digital whole slide
image (WSI) web-viewer platforms through May 2021. The microscope platform (eeDAP: an
evaluation environment for digital and analog pathology) is the reference technology.36

Pathologists are familiar with this technology, and it does not suffer from the limitations of
slide digitization. In addition to the microscope platform, we used two digital image viewing
and manipulation platforms, PathPresenter37,38 and caMicroscope.39 These platforms enable
data collection worldwide regardless of physical proximity to the slides. An overview of this
work can be found in an earlier publication.35

This manuscript presents initial results and analyses from a pilot study of the high throughput
truthing (HTT) project. We discuss modifications to the original protocol and data-collection
platforms made during and since the pilot study. These modifications were necessary as gaps
were identified from pathologist feedback and data analysis. Such changes are the purpose of a
pilot study and would not be permitted in a pivotal study. We also explore the validity of our
quantitative assessment methods using the annotations collected on the PathPresenter digital
platform, which will inform the development of statistical methods for interpathologist agree-
ment using annotations. This assessment will inform the creation of a pivotal validation dataset
(slides, images, annotations, and statistical methods) for the evaluation of AI/ML algorithms in
digital pathology fit for a regulatory purpose that can be replicated by other researchers and
developers.

2 Methods

2.1 Purpose of the Pilot Study

The purpose of our pilot study (or any pilot study) is to have an opportunity to evaluate the
workflows and tools that will be used in the final pivotal study. Modifications to protocols and
data-collection platforms can be made during and after the pilot study without spoiling the goals
and hypotheses of a pivotal study. Here, we discuss issues, gaps, and inconsistencies identified
from pathologist feedback and data analysis. We also discuss the specific changes made to our
original protocol and data-collection tools to address these issues.

2.2 Clinical Use Case: sTILs Density Estimates

The clinical use case of this work is the annotation of sTILs in breast cancer H&E slides.
We digitized 64 slides of invasive ductal carcinoma core biopsies prepared at a single site by
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recutting sections from formalin-fixed paraffin-embedded blocks. The slides were scanned on a
Hamamatsu Nanozoomer-RS 2.0 (0.23 μm∕pixel ¼ 40×magnification). Each slide represents a
single case of breast cancer. A collaborating pathologist preselected ten 500 μm × 500 μm
regions of interest (ROIs) per slide for 640 total unique ROIs. The ROIs were selected to sample
tumor and nontumoral tissue.35 For this pilot study, the number of ROIs was selected to provide
both a representation of breast cancer tissue and sTILs variability and serve as the basis for sizing
the pivotal study. The 64 cases in the pilot study were subdivided into eight batches of eight cases
each with ten ROIs per case. Therefore, each batch consisted of 80 ROIs, and the full study had
640 ROIs. This subdivision into batches allowed for easier workload management and slide
handling.

Pathologists annotated each ROI by providing comments on the sTILs content through a
series of input tasks. The original description of the pilot study included two annotation tasks:
label the ROI and, if the ROI is of a type that is evaluable for sTILs, estimate the density of sTILs
(0% to 100%). The primary characteristic for an ROI to be evaluable is whether it contains
tumor-associated stroma. With assistance from our collaborating pathologists, we created four
options for labeling the ROI. Two of the label categories (“intratumoral stroma” and “invasive
margin”) are considered evaluable for sTILs density estimation.16,40 If a pathologist labels
an ROI with the other two labels (“tumor with no intervening stroma” or “other region”), the
ROI is not evaluable for sTILs.

We added the task of estimating the percent of tumor-associated stroma after the launch of
the pilot study. Percent tumor-associated stroma enables evaluation of an algorithm’s ability to
identify tumor-associated stroma, the tissue where sTILs density is to be evaluated. This is a
modification from the protocol previously described.35

The sTILs density is the percent of area of tumor-infiltrating lymphocytes within the area of
tumor-associated stroma.16 It is calculated as

EQ-TARGET;temp:intralink-;sec2.2;116;436sTILsDensity ¼
�

Area of sTILs

Area of tumor-associated stroma

�
× 100%:

Following emerging evidence and recommendations from clinical experts, the sTILs density
estimates can be grouped into three bins corresponding to anticipated patient management deci-
sions and outcomes: “low” or 0% to 10%; “moderate” or 11% to 40%; and “high” or 41% to
100%.18,30,31 We provided pathologists with a visual reference created by Salgado et al.16 to help
pathologists calibrate their estimates of the sTILs density. The reference sheet pairs represen-
tative ROIs of a range of sTILs densities in H&E images with a black-and-white image of that
ROI with the sTILs digitally sectioned from the background content.

2.3 Recruitment of Readers and Description of Data Collection Technology

Following an IRB exempt determination protocol, we crowdsourced volunteer pathologists
by recruiting at in-person conferences, online research forums, and emailing pathology com-
munities for distribution to their networks. Crowdsourcing provides open access for data col-
lection, enlisting the services of a large number of volunteers for the data collection process.
These crowdsourced pathologists completed data-collection tasks via two modalities: an optical
light microscope (eeDAP36) and two digital WSI viewing platforms (caMicroscope39 and
PathPresenter37). Pathologists recruited in-person were directed to the eeDAP platform, and
pathologists recruited online were directed to choose their preferred digital platform,
PathPresenter, or caMicroscope. Pathologists were allowed to use multiple platforms during the
pilot study. The workflow for the study is shown in Fig. 1.

Pathologists were recruited to contribute at an on-site data-collection event held in conjunc-
tion with the annual meeting of the United States and Canadian Academy of Pathology (USCAP)
2020. Further in-person data collection on eeDAP was paused due to the COVID-19 pandemic.
The digital platforms replicated the eeDAP data-collection workflow and allowed continuous
and world-wide data collection during the COVID-19 pandemic.

Using webinars, training videos, and scientific publications, we provided training on sTILs
identification and density estimation. In total, ∼90 min of training was available for this study.
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We did not enforce completion of training prior to data collection. Pathologists were asked to
annotate complete batches but were not required to annotate all 640 ROIs in the study. We also
asked participants to complete batches of 80 ROIs in a random order, and late in the pilot study,
we introduced a random-number-generator to assist pathologists with randomizing the sequence
of batches. Use of the random-number-generator was not enforced.

2.4 Time to Collect Data Across All Three Platforms

We examined the time-associated burden of this study on pathologists. The time it takes to com-
plete each ROI annotation is automatically recorded by the annotation software for all platforms.
The time recorded by eeDAP does not include the time required for the microscope stage to
move between ROIs. Additionally, the eeDAP system requires additional time to register each
slide in a batch to the corresponding digital image. eeDAP consists of two levels of registration
(low and high resolution) and a camera-eyepiece offset correction. The high-resolution regis-
tration and camera-eyepiece offset correction are optional but add additional time to the study.
When these optional steps are performed, registration accuracy is ∼42 μm.41 We calculated the

Fig. 1 Workflow for the pilot study of the HTT Project. Study materials: the project includes
a study of 640 ROIs from 64 breast cancer H&E slides. Pathologist recruitment: pathologists
were recruited to either collect data in-person (eeDAP) and/or using a digital web-application
(PathPresenter or caMicroscope). Study analysis: the results of the pilot study were then analyzed
across all platforms and interobserver agreement analysis was evaluated using the results from
the PathPresenter platform.
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time for annotation on eeDAP by combining (1) the time it takes to set up and run through slides
without deliberative annotation (an experiment completed by the study investigators, not the
study pathologists) and (2) the average time it took study pathologists to annotate ROIs on
eeDAP.

2.5 Quantitative Analysis of the PathPresenter Pilot Study Data

For this work, we analyzed the distribution of sTILs annotations from the PathPresenter digital
platform collected from February 2020 to May 2021. Variability from platform differences were
eliminated by analyzing only PathPresenter annotations. In this analysis, we calculated the
sample mean and variance of the sTILs density estimates over the readers for each ROI, and
we examined these variance estimates and corresponding coefficients of variation (CV) across
the entire range and within the three density bins defined above (low, moderate, and high).

We also characterized the interpathologist agreement with the root-mean-squared difference,
which is similar to the root-mean-squared error but does not require an independent reference
standard.42 Specifically, the pathologist-to-pathologist expected mean-squared difference (MSD)
is given as

EQ-TARGET;temp:intralink-;sec2.5;116;531MSD ¼ E½ðXj 0kl − XjklÞ2�;

where the X’s denote the sTILs density estimates from two different pathologists (j and j 0) for
the same ROI (k and l denote the case and ROI, respectively). This metric is an average over
pathologists, cases, and ROIs. In a full multireader and multicase study, we should account for
the variability and correlations from readers and cases,43 as well as the correlation of ROIs that
are nested within a case. In this work, we analyze two readers who each completed the entire
study and ignore the correlation of ROIs.

2.6 Pilot Study Feedback from Expert Collaborators

After collecting and exploring the pilot study data, we convened an expert panel of seven prac-
ticing pathologists and one clinical scientist with expertise in microscopy and pathologist data
collection.44 All expert panelists were pilot study collaborators with expertise in breast cancer
pathology, training in sTILs assessment, and involvement in the design of our pilot study. One of
these pathologists completed the pilot study. Two other expert pathologists fully annotated batch
1 (80 ROIs) of the pilot study. These annotations were completed at least 6 months before the
expert panel was convened; crowdsourced pathologists were not invited. Through a series of
eight recorded one-hour virtual sessions, the experts discussed each ROI regarding their sTILs
assessment and experience with the data-collection process. The virtual sessions included a
minimum of three expert panelists with study investigators guiding the discussion and note-
taking. From these discussions, we identified limitations in our platforms and workflows.
We also discussed potential resolutions to these limitations that will improve the pivotal study.44

3 Results

From the start of the pilot study in February 2020 through May 2021, 29 pathologists generated
7373 annotations across the three annotation platforms, with eight pathologists annotating on
multiple platforms. Information about the readers in the study varies based on completion of
the data-collection registration form. The registration form was provided to readers but not
mandated. From the registration survey, 19 readers were board-certified pathologists with a
range of 3 to 44 years since certification (median = 11 years and IQR = 17.5). Four readers
reported current enrollment in a pathology residency program. Six readers did not provide infor-
mation regarding their level of experience.

Annotations varied across platforms by number of ROIs scored and whether a pathologist
completed a full study. By the conclusion of the pilot study, seven pathologists annotated all
640 ROIs on at least one platform. On PathPresenter, 50.2% (321/640) of the ROIs were
annotated more than two times and two pathologists completed the full study (640 ROIs).
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Annotation within the study was uneven. The collection of the first 80 ROIs known as batch 1
was annotated 16 times, but all other batches were only annotated seven to nine times.

Table 1 shows the results of the data-collection efforts of the pilot study across all platforms.
Information on total time to complete a study was estimated from available data. A study of the
eeDAP platform examined the additional time needed to complete the study in-person due to
slide registration and hardware operation. On average, the additional time needed for in-person
data-collection was 30:54 min per four slides.

We investigated the distribution of annotations across all platforms and summarized total
ROIs stratified by tumor classification and sTILs density bin in Table 2. We tallied the instances
for each of the four ROI labels and the mean sTILs density per ROI within each of the pre-
selected density bins. The distribution was counted within individual platforms and summarized
across all platforms. As shown in Table 2, over 75.8% (5592/7373) of all labels were listed as
“intratumoral stroma.” Additionally, 60.9% (4492/7373) of all sTILs density estimates fell
within the 0% to 10% and only 4.4% (322/7373) were estimates between 41% and 100%.

We analyzed the sTILs density estimates for every ROI with at least two annotations on the
PathPresenter platform (n ¼ 495). As four of the ten PathPresenter readers did not complete
registration, we did not factor our analysis by experience level. In Fig. 2(a), we show the sample

Table 1 Tabulated annotation counts and average annotation time of the pilot study by data col-
lection platform. Included are the number of readers and individual observations per platform, the
average time to annotate a single ROI per platform with standard deviation in brackets, additional
time needed for eeDAP hardware operation, and the estimated total average time for a pathologist
to complete a full study (n ¼ 640 ROIs). Values for batch time and study time are calculated by
multiplying average time for annotation per ROI (ROI/sec) and average time for hardware account-
ing for the number of ROIs. As no full study set was completed on the eeDAP platform, these
numbers are estimated from a small subset of readers (nReaders = 7 and nROI 80 to 240).

Platform Readers Observations

Avg. time for
annotation [st. dev]

(ROIs = 1, s)

Avg. time for
hardware

(ROIs = 1, s)
Batch time

(ROIs = 80, h)
Study time

(ROIs = 640, h)

eeDAP 7 440 27.41 [24.94] 46.34 1.64 13.11

PathPresenter 10 1833 29.98 [29.37] N/A 0.67 5.33

caMicroscope 20 5100 39.06 [34.73] N/A 0.87 6.94

All 37 7373 32.15 [35.52]

Table 2 Distribution of pathologist annotations (n ¼ 7373) in the pilot study by ROI label and the
density bins. All ROIs are assigned an ROI label. If the label is considered evaluable, the patholo-
gist then proceeds to assign the ROI a density estimate. Density estimates fell into one of three
bins: low, moderate, or high.

ROI label Density Bins

Evaluable (n ¼ 5958) Not evaluable

Low: 0%
to 10%

Moderate:
11% to 40%

High: 41%
to 100%Platform

Intratumoral
stroma

Invasive
margin

Tumor with no
intervening stroma Other

eeDAP 349 5 9 77 323 21 10

PathPresenter 1326 91 288 128 1127 211 79

caMicroscope 3917 270 210 703 3042 912 233

All 5592 366 507 908 4492 1144 322
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variance of the estimates as a function of the mean sTILs density estimates on the PathPresenter
platform. From this figure, we observe that the pathologist variance depends on the ROI and
increases with the mean. Figure 2(b) shows the CVof the sTILs density estimates as a function of
the mean sTILs density estimates. We observe high CVat low sTILs density that decreases as the
sTILs density increases. The CV plot also shows that the standard deviation of the data is not
proportional to the mean.

We characterized interpathologist agreement by analyzing the annotations of the two path-
ologists who completed a full study on the PathPresenter platform. Table 3 shows the number of
instances each pathologist gave a density estimate of an ROI or indicated an ROI was not
evaluable. We analyzed the observations for each ROI as paired observations and averaged
observations. For example, only instances where ROIs were marked as not evaluable by both
pathologists were counted as a paired observation. Thus, 89 ROIs were labeled as not evaluable
by both pathologists. In total, 448 ROIs were given density estimates by both pathologists
(Table 3). This metric also helps us understand the number of ROIs assigned similar scores,
but observations are lost when scores cross between density bins. Averaged observations are
paired according to the mean density estimate of the ROI. Therefore, an ROI with density esti-
mates across two bins (e.g., 9% and 11%) will be binned according to the mean of the estimates
(10% = low-density bin). Finally, we calculated the root mean square difference (RMSD) within
each density bin for the averaged observations.

Fig. 2 (a) Variance as a function of the mean calculated as averages over all readers on
PathPresenter. Each blue circle represents one ROI (n ¼ 495) with at least two sTILs density
estimates. The horizontal lines show the average variance in 10% bins of the data (49 ROIs).
Vertical dashed lines split the data into low (0% to 10%), moderate (11% to 40%), and high
(41% to 100%) sTILs density bins. (b) Coefficient of variation calculated as averages over all read-
ers on PathPresenter.

Table 3 Individual and paired agreement analysis of the two pathologists who annotated all
640 ROIs in the study (anonymized ReaderIDs shown). The number of times each pathologist
annotated an ROI as not evaluable or assigned a density estimate within the low, moderate, or
high-density bin is shown in the first two rows. The third row shows the paired ROI observations
for both pathologists. The fourth row shows the averaged observations for both pathologists. The
last row is the calculated root mean square difference (RMSD) between the two pathologists
across all densities and within the low, moderate, and high-density bins.

Not
evaluable

All densities:
0% to 100%

Low densities:
0% to 10%

Mod. densities:
11% to 40%

High densities:
41% to 100%

ReaderID 4776 92 548 426 94 28

ReaderID 0455 189 451 344 68 39

Paired observations 89 448 313 44 24

Averaged observations N/A 448 319 93 36

RMSD 10.62 4.62 14.25 26.25
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Figure 3 shows Bland–Altman plots for each density bin to better visualize the difference
between the two pathologists. In these plots, the differences between the paired observations are
plotted against the mean of the estimates. The mean difference ðm̄Þ for each bin is represented by
the solid horizontal black line in each plot. The limits of agreement (horizontal red dashed lines)
were constructed using twice the standard deviation of the differences in sTILs densities

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

^RMSD2

q
− m̄2Þ. As there were very few paired observations within the moderate and

high-density bins, any further trend-identification analysis or confidence interval calculations
were deemed inappropriate.

4 Discussion

The pilot study of the HTT project used three data collection platforms to generate 7373 anno-
tations from 29 pathologists over a 15-month period. This manuscript summarizes the context,
methods, and experience of the data collection with a focus on understanding processes to speed
data collection and reduce pathologist variability. We focus on data collection and assessment
time across platforms but only present quantitative the PathPresenter annotation results to under-
stand pathologist variability on a single platform. Future work will look at the data from the other
platforms, building on the lessons learned and presented here.

We estimated the time-burden on pathologists by a data-collection platform (Table 1). While
the two digital platforms have similar estimated times (estimated average is 36 s/ROI), a patholo-
gist using the eeDAP system can expect to spend double the amount of time on the study due to
stage movements and registering the images to the slides. Thus, we are investigating upgrades to
the eeDAP hardware and annotation workflow for the pivotal study. These time estimates are
useful for planning future data collection activities and determining potential reimbursement
rates for annotators.

We did not expect crowdsourced volunteer pathologists to annotate all 640 ROIs of the pilot
study. The complete study takes more than five hours (Table 1), which is beyond reasonable
expectations for most volunteers. Our plan for the pivotal study is to manage the workload

Fig. 3 (a)–(d) Mean-difference (Bland–Altman) plots of the two pathologists with complete sets of
annotations on the PathPresenter platform. Each blue circle represents a group of ROIs that share
the same mean and different values. The size of the light blue circle is proportional to the number
of ROIs; the largest circle corresponds to 50 ROIs. The horizontal black line shows the bias from 0
of each density bin. Red horizontal dashed lines indicate the upper and lower limits of agreement
derived from the RMSD in Table 3.
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of each pathologist by balancing the distribution of batches among the pathologists in the spirit
of a split-plot study design.45–47 We did not effectively manage the workload of the pathologists
in the pilot study as the data-collection tools did not yet have methods to create pathologist-
specific work lists.

We found that batch 1 was annotated double the number of times as other batches. This
finding suggests a need to either enforce the use of the random-number-generator or integrate
another strategy to direct readers within the workflow. We analyzed the pilot study data as con-
tinuous data (0% to 100%) and within three predefined clinical bins (low 0% to 10%, moderate
11% to 40%, and high 41% to 100%) as prior studies of sTILs found associations between these
density bins and clinical outcomes.18,24,30,31 We also observed 60.9% of the annotations were in
the low sTILs density bin (Table 2). The two pathologists who annotated all 640 ROIs also
identified over 70% of evaluable ROIs as low density (319/448), demonstrating that low-density
ROIs persist throughout the study and are not confined to the most annotated batches (Table 4).
These findings indicate that the ROIs selected for the pivotal study will need to avoid oversam-
pling of the low-density bin within individual batches as well as within the study. Moreover, the
entire pathologist workflow must be managed to ensure equitable distribution of annotations
between batches.

Consistent with prior studies, there is high variability in pathologist sTILs density estimates
(Fig. 2).26,30–32 Plotting variance as a function of the mean shows that the variance of the den-
sity estimates increases with the mean. We quantify this finding with the RMSD results in
Table 3. The CV plot shows a complicated relationship with the mean with large relative
variability for small sTILs densities (Fig. 2). Together, Figs. 2 and 3 indicate that the data
are not independent and identically distributed or well-behaved as a function of the mean
sTILs density. This precludes the use of many standard analysis methods for quantitative data.
We have explored log and other transformations, but they did not stabilize the mean-variance
relationship. As such, we will explore methods that treat the data as ordinal (ranks) and nomi-
nal (bins). Furthermore, the analyses in this work ignored the correlation between ROIs from
the same slide. We will address this limitation in future work and properly account for those
correlations.

This work identified several limitations in the technical workflows of the pilot study, includ-
ing completion of the prestudy participant registration survey. The low completion rate for the
pre-study registration translated to an inability to identify the experience level of 6 of the 29 pilot
study readers. The original prestudy registration did not request information on a reader’s clinical
specialty or familiarity with the clinical task, eliminating our ability to stratify expert readers
from those new to the task or who had not completed training. These issues informed the design
and integration of a mandatory registration survey that will prevent readers from starting the
study until all fields of the registration survey are complete.

An additional component contributing to variability within the HTT project was the mod-
erately structured and unenforced training provided to readers. As completion of the training
modules was unmonitored and honor-based, we have no ability to determine the actual com-
pletion rates for study participants. We cannot evaluate the impact of existing training modules
on pathologists’ annotations or extrapolate the potential reduction in variability resulting from
enforcement and standardization of training. To resolve these issues, we are in the process of
developing a standardized training module consisting of short videos describing the clinical task
for each data collection platform, a training set of ROIs that will provide feedback on participant
annotations, and a mandatory proficiency test. A passing grade on this proficiency test will be
required to proceed with the study. Standardizing registration and training workflows will assist
with evaluating pathologist performance in the pivotal study.

Finally, our data analysis results should be taken with caution. We made changes to the
protocol and data-collection platforms during the pilot study. Another limitation of our analy-
sis is the methods used to determine the average time needed for an annotation (Table 1). The
eeDAP platform did not record the time related to microscope stage movements and both
digital and microscope platforms can only determine the time spent on the annotation input
screen (and will not reflect any interruptions). Nonetheless, we believe these measurements
can help us plan the time it will take to conduct future pivotal studies, which is their true
purpose here.
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5 Conclusions

This work contributes to the field of digital pathology and AI/ML validation by establishing the
methods and tools useful for the standardized collection of pathologist annotations. It also dem-
onstrates that new analysis methods are needed as prior assumptions of the appropriate statistical
methods for establishing interpathologist agreement were not supported, like treating the data as
independent and identically distributed and finding variance differs as a function of the mean.
This pilot study and the associated interpathologist agreement methods we are currently explor-
ing will be used to size and create a validation dataset for AI/ML algorithms that yield sTILs
density estimates in breast cancer. Our pilot dataset and analysis methods are available on a
public HTT Github repository (https://github.com/didsr/htt) to allow open access to our methods
and feedback from the digital pathology and statistics communities. The data and methods serve
as an instructive tool for AI/ML algorithm developers and researchers and can be replicated for
other tumor sites and quantitative biomarkers.
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